Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. An Overview on Nanoparticles
2.1. Definition, Properties, Synthesis and Uses
2.2. Mechanism of Action of Nanoparticles
2.3. Types of Nanoparticles Used in Plant Pathogenic Fungal Control
2.3.1. Nanoparticles as Protectants
2.3.2. Nanoparticles as Nanocarriers
Nanoparticle as a Carrier of Different Fungicides
2.4. Leaching and Phytoxicity of Nanoparticles
2.5. Limitations of Nanoparticles
3. Prospectives of Nanoformulations in Managing Plant Pathogenic Fungi
3.1. Agronanofungicides Formulations
3.2. Zataria multiflora Essential Oils Based Nanoformulations: For Controlling Fungi
3.3. Ginger Essential Oils-Based Nanoformulations: For Controlling Fungi
4. Biosafety of Nanoparticles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Muhammad, A.; Isra, N.; Shahbaz, T.S.; Nasir, A.R.; Ehsan, H.; Muhammad, U.; Hamza, S.; Kiran, F.; Ehtsham, A.; Abdul, Q. Nanoparticles: A safe way towards fungal diseases. Arch. Phytopathol. Plant Prot. 2020, 53, 781–792. [Google Scholar] [CrossRef]
- Worrall, E.A.; Hamid, A.; Mody, K.T.; Mitter, N.; Pappu, H.R. Nanotechnology for Plant Disease Management. Agronomy 2018, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Flood, J. The importance of plant health to food security. Food Secur. 2010, 2, 215–231. [Google Scholar] [CrossRef]
- Zaller, J.; Brühl, C.A. Editorial: Non-target Effects of Pesticides on Organisms Inhabiting Agroecosystems. Front. Environ. Sci. 2019, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, G.R. Pesticide Use and World Food Production: Risks and Benefits; ACS Publications: Washington, DC, USA, 2003. [Google Scholar]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef]
- Sinha, K.; Ghosh, J.; Sil, P.C. 2—New pesticides: A cutting-edge view of contributions from nanotechnology for the development of sustainable agricultural pest control A2—Grumezescu, AlexandruMihai. In New Pesticides and Soil Sensors; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Fakurazi, S.; Idris, A.S.; Hilmi, N.H.Z.; Daim, L.D.J. Chitosan-Based Agronanofungicides as a Sustainable Alternative in the Basal Stem Rot Disease Management. J. Agric. Food Chem. 2020, 68, 4305–4314. [Google Scholar] [CrossRef]
- Balaure, P.C.; Gudovan, D.; Gudovan, I. Nanopesticides: A new paradigm in crop protection. In New Pesticides and Soil Sensors; Academic Press: London, UK, 2017; pp. 129–192. [Google Scholar]
- Sekhon, B.S. Nanotechnology in agri-food production: An overview. Nanotechnol. Sci. Appl. 2014, 7, 31–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadar, E.; Cunliffe, M.; Fisher, A.; Stolpe, B.; Lead, J.; Shi, Z. Chemical interaction of atmospheric mineral dust-derived nanoparticles with natural seawater—EPS and sunlight-mediated changes. Sci. Total Environ. 2014, 468, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Waychunas, G.A. Natural nanoparticle structure, properties and reactivity from X-ray studies. Powder Diffr. J. 2009, 24, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, E.; Jason, C.W. The Future of Nanotechnology in Plant Pathology. Annu. Rev. Phytopathol. 2018, 56, 111–133. [Google Scholar]
- Astruc, D. (Ed.) Nanoparticles and Catalysis; JohnWiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Dreizin, E.L. Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 2009, 35, 141–167. [Google Scholar] [CrossRef]
- Costa Silva, L.P.; Oliveira, J.P.; Keijok, W.J.; Silva, A.R.; Aguiar, A.R.; Guimarães, M.C.C.; Braga, F.R. Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagus fungus Duddingtonia flagans. Int. J. Nanomed. 2017, 12, 6373–6381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245. [Google Scholar] [CrossRef]
- Abbasi, E.; Milani, M.; Aval, S.F.; Kouhi, M.; Akbarzadeh, A.; Nasrabadi, H.T.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; et al. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol. 2014, 42, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Savun-Hekimoglu, B.A. Review on Sonochemistry and Its Environmental Applications. Acoustics 2020, 2, 766–775. [Google Scholar] [CrossRef]
- Sari, A.H.; Khazali, A.; Parhizgar, S.S. Synthesis and characterization of long-CNTs by electrical arc discharge in deionized water and NaCl solution. Int. Nano Lett. 2018, 8, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Filipczak, N.; Yalamarty, S.S.K.; Li, X.; Parveen, F.; Torchilin, V. Developments in Treatment Methodologies Using Dendrimers for Infectious Diseases. Molecules 2021, 26, 3304. [Google Scholar] [CrossRef] [PubMed]
- Mahato, R.; Narang, A. Pharmaceutical Dosage Forms and Drug Delivery, 3rd ed.; Taylor & Francis Group, LLC: New York, NY, USA, 2018. [Google Scholar]
- Liu, Y.; Tong, Z.; Prud’homme, R.K. Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag. Sci. 2008, 64, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Simões, M.F.; Ottoni, C.A.; Antunes, A. Biogenic Metal Nanoparticles: A New Approach to Detect Life on Mars? Life 2020, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Vo, T.; Nguyen, T.; Huynh, T.; Vo, T.; Nguyen, T.; Nguyen, D.; Dang, V.; Dang, C.; Nguyen, T. Biosynthesis of Silver and Gold Nanoparticles Using Aqueous Extract from Crinum latifolium Leaf and Their Applications Forward Antibacterial Effect and Wastewater Treatment. J. Nanomater. 2019, 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.N.; Rahman, F. Production and Modification of Nanofibrillated Cellulose Composites and Potential Applications. In Green Composites for Automotive Applications; Woodhead Publishing: Duxford, UK, 2019; pp. 115–141. [Google Scholar] [CrossRef]
- Mujeebur, R.K.; Tanveer, F.R. Nanotechnology: Scope and Application in Plant Disease Management. Plant Pathol. J. 2014, 13, 214–231. [Google Scholar]
- Singh, D.; Kumar, A.; Singh, A.K.; Tripathi, H.S. Induction of resistance in field pea against rust disease through various chemicals/micronutrients, and their impact on growth and yield. Plant Pathol. J. 2013, 12, 36–49. [Google Scholar] [CrossRef]
- Bryaskova, R.; Pencheva, D.; Nikolov, S.; Kantardjiev, T. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J. Chem. Biol. 2011, 4, 185–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 90, 78–84. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P.T. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 93, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.; Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 2016, 17, 996. [Google Scholar] [CrossRef]
- Yang, W.; Peters, J.I.; Williams, R.O. Inhaled nanoparticles—A current review. Int. J. Pharm. 2008, 356, 239–247. [Google Scholar] [CrossRef]
- Kah, M.; Hofmann, T. Nanopesticide research: Current trends and future priorities. Environ. Int. 2014, 63, 224–235. [Google Scholar] [CrossRef]
- Gogos, A.; Knauer, K.; Bucheli, T.D. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J. Agric. Food Chem. 2012, 60, 9781–9792. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, H. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: Exploring their scope and potential in agriculture. Appl. Microbiol. Biotechnol. 2015, 99, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272–1291. [Google Scholar] [CrossRef]
- Jain, D.; Kothari, S. Green synthesis of silver nanoparticles and their application in plant virus inhibition. J. Mycol. Plant Pathol. 2014, 44, 21. [Google Scholar]
- Elbeshehy, E.K.F.; Elazzazy, A.M.; Aggelis, G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front. Microbiol. 2015, 6, 453. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, R.; Rodriguez, R.J.; Yao, Y.; Kokini, J.L. Advances in nanotechnology as they pertain to food and agriculture: Benefits and risks. Annu. Rev. Food Sci. Technol. 2017, 8, 467–492. [Google Scholar] [CrossRef] [PubMed]
- Alkubaisi, N.A.O.; Aref, N.M.M.A.; Hendi, A.A. Method of Inhibiting Plant Virus Using Gold Nanoparticles. U.S. Patents US9198434B1, 1 December 2015. [Google Scholar]
- Cota-Arriola, O.; Onofre Cortez-Rocha, M.; Burgos-Hernández, A.; Marina Ezquerra-Brauer, J.; Plascencia-Jatomea, M. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: Development of new strategies for microbial control in agriculture. J. Sci. Food Agric. 2013, 93, 1525–1536. [Google Scholar] [CrossRef] [PubMed]
- Kochkina, Z.; Pospeshny, G.; Chirkov, S. Inhibition by chitosan of productive infection of T-series bacteriophages in the Escherichia coli culture. Mikrobiologiia 1994, 64, 211–215. [Google Scholar]
- Pospieszny, H.; Chirkov, S.; Atabekov, J. Induction of antiviral resistance in plants by chitosan. Plant Sci. 1991, 79, 63–68. [Google Scholar] [CrossRef]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef]
- Mody, V.V.; Cox, A.; Shah, S.; Singh, A.; Bevins, W.; Parihar, H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl. Nanosci. 2014, 4, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Ekambaram, P.; Sathali, A.A.H.; Priyanka, K. Solid lipid nanoparticles: A review. Sci. Rev. Chem. Commun. 2012, 2, 80–102. [Google Scholar]
- Borel, T.; Sabliov, C. Nanodelivery of bioactive components for food applications: Types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu. Rev. Food Sci. Technol. 2014, 5, 197–213. [Google Scholar] [CrossRef]
- Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol. 2013, 19, 29–43. [Google Scholar] [CrossRef]
- Maluin, F.N.; Hussein, M.Z. Chitosan-Based Agronanochemicals as a sustainable alternative in Crop Protection. Molecules 2020, 25, 1611. [Google Scholar] [CrossRef] [Green Version]
- Ke, C.-L.; Deng, F.-S.; Chuang, C.-Y.; Lin, C.-H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef] [PubMed]
- Varlamov, V.P.; Mysyakina, I.S. Chitosan in biology, microbiology, medicine, and agriculture. Microbiology 2018, 87, 712–715. [Google Scholar] [CrossRef]
- Kravanja, G.; Primozic, M.; Knez, Z.; Leitgeb, M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules 2019, 24, 1960. [Google Scholar] [CrossRef] [Green Version]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.L.; Liao, Y.T.; Lin, C.H. MSS2 maintains mitochondrial function and is required for chitosan resistance, invasive growth, biofilm formation and virulence in Candida albicans. Virulence 2021, 12, 281–297. [Google Scholar] [CrossRef]
- Seankamsorn, A.; Cherdthong, A.; So, S.; Wanapat, M. Influence of chitosan sources on intake, digestibility, rumen fermentation, and milk production in tropical lactating dairy cows. Trop. Anim. Health Prod. 2021, 53, 241. [Google Scholar] [CrossRef]
- Seankamsorn, A.; Cherdthong, A.; Wanapat, M. Combining crude glycerin with chitosan can manipulate in vitro ruminal efficiency and inhibit methane synthesis. Animals 2020, 10, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maluin, F.N.; Mohd, Z.H.; Nor Azah, Y.; Sharida, F.; Idris, A.S.; Nur Hailini, Z.H.; Leona, D.J.D. Enhanced fungicidal efficacy on Ganoderma boninense by simultaneous co-delivery of hexaconazole and dazomet from their chitosan nanoparticles. RSC Adv. 2019, 9, 27083. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Huang, Q.; Wu, Y. A novel chitosan-poly (lactide) copolymer and its submicron particles as imidacloprid carriers. Pest Manag. Sci. 2011, 67, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Laks, P.; Heiden, P. Controlled release of biocides in solid wood. II. Efficacy against Trametes versicolor and Gloeophyllum trabeum wood decay fungi. J. Appl. Polym. Sci. 2002, 86, 608–614. [Google Scholar] [CrossRef]
- Hatfaludi, T.; Liska, M.; Zellinger, D.; Ousman, J.P.; Szostak, M.; Jalava, K.; Lubitz, W. Bacterial ghost technology for pesticide delivery. J. Agric. Food Chem. 2004, 52, 5627–5634. [Google Scholar] [CrossRef]
- Xu, L.; Cao, L.-D.; Li, F.-M.; Wang, X.-J.; Huang, Q.-L. Utilization of chitosan-lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. J. Dispers. Sci. Technol. 2014, 35, 544–550. [Google Scholar] [CrossRef]
- Ilk, S.; Saglam, N.; Özgen, M. Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent. Artif. Cells Nanomed. Biotechnol. 2017, 45, 907–916. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Laks, P.; Heiden, P. Controlled release of biocides in solid wood. III. Preparation and characterization of surfactant-free nanoparticles. J. Appl. Polym. Sci. 2002, 86, 615–621. [Google Scholar] [CrossRef]
- Liu, Y.; Laks, P.; Heiden, P. Controlled release of biocides in solid wood. I. Efficacy against brown rot wood decay fungus (Gloeophyllum trabeum). J. Appl. Polym. Sci. 2002, 86, 596–607. [Google Scholar] [CrossRef]
- Janatova, A.; Bernardos, A.; Smid, J.; Frankova, A.; Lhotka, M.; Kourimská, L.; Pulkrabek, J.; Kloucek, P. Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Ind. Crops Prod. 2015, 67, 216–220. [Google Scholar] [CrossRef]
- Nasseri, M.; Golmohammadzadeh, S.; Arouiee, H.; Jaafari, M.R.; Neamati, H. Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition. Iran. J. Basic Med. Sci. 2016, 19, 1231–1237. [Google Scholar]
- Campos, E.V.R.; De Oliveira, J.L.; Da Silva, C.M.G.; Pascoli, M.; Pasquoto, T.; Lima, R.; Abhilash, P.; Fraceto, L.F. Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci. Rep. 2015, 5, 13809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhou, C.; Xia, X.; Liu, Y. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: Preparation and functional evaluation. Int. J. Nanomed. 2016, 11, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Hou, R.; Zhang, Z.; Pang, S.; Yang, T.; Clark, J.M.; He, L. Alteration of the nonsystemic behavior of the pesticide ferbam on tea leaves by engineered gold nanoparticles. Environ. Sci. Technol. 2016, 50, 6216–6223. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhang, H.; Cao, C.; Zhang, J.; Li, F.; Huang, Q. Quaternized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release. Nanomaterials 2016, 6, 126. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, D.; Dilbaghi, N. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ. Sci. Pollut. Res. 2017, 24, 926–937. [Google Scholar]
- Zhao, P.; Cao, L.; Ma, D.; Zhou, Z.; Huang, Q.; Pan, C. Synthesis of Pyrimethanil-Loaded Mesoporous Silica Nanoparticles and Its Distribution and Dissipation in Cucumber Plants. Molecules 2017, 22, 817. [Google Scholar] [CrossRef]
- Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B.S.; Saboury, A.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother. 2019, 109, 1100–1111. [Google Scholar] [CrossRef]
- Wang, X.; Ma, X.; Huang, P.; Wang, J.; Du, T.; Du, X.; Lu, X. Magnetic Cu-MOFs embedded within graphene oxide nanocomposites for enhanced preconcentration of benzenoid-containing insecticides. Talanta 2018, 181, 112–117. [Google Scholar] [CrossRef]
- Zhao, P.; Cao, L.; Ma, D.; Zhou, Z.; Huang, Q.; Pan, C. Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants. Nanoscale 2018, 10, 1798–1806. [Google Scholar] [CrossRef]
- Khoo, K.S.; Chia, W.Y.; Tang, D.Y.Y.; Show, P.L.; Chew, K.W.; Chen, W. Nanomaterials Utilization in Biomass for Biofuel and Bioenergy Production. Energies 2020, 13, 892. [Google Scholar] [CrossRef] [Green Version]
- Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem. 2019, 275, 113–122. [Google Scholar] [CrossRef]
- Huang, W.; Wang, C.; Duan, H.; Bi, Y.; Wu, D.; Du, J.; Yu, H. Synergistic Antifungal Effect of Biosynthesized Silver Nanoparticles Combined with Fungicides. Int. J. Agric. Biol. 2018, 20, 1225–1229. [Google Scholar]
- Kalagatur, N.K.; Ghosh, O.S.N.; Sundararaj, N.; Mudili, V. Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front. Pharmacol. 2018, 9, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, C.; Wang, Y.; Zhang, Y.; Li, X. Compound pesticide controlled release system based on the mixture of poly(butylene succinate) and PLA. J. Microencapsul. 2018, 35, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G.A. Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol. 2019, 7, 259. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhang, H.; Zhou, Z.; Xu, C.; Shan, Y.; Lin, Y.; Huang, Q. Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles. Nanoscale 2018, 10, 20354–20365. [Google Scholar] [CrossRef]
- Li, R.; Liu, Q. Engineered Bacterial Outer Membrane Vesicles as Multifunctional Delivery Platforms. Front. Mater. 2020, 7, 202. [Google Scholar] [CrossRef]
- Qian, K.; Shi, T.; Tang, T.; Zhang, S.; Liu, X.; Cao, Y. Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim. Acta 2011, 173, 51–57. [Google Scholar] [CrossRef]
- Mydin, R.S.M.N.; Zahidi, I.N.M.; Ishak, N.N.; Nik Ghazali, N.S.S.; Moshawih, S.; Siddiquee, S. Potential of Calcium Carbonate Nanoparticles for Therapeutic Applications. Malays. J. Med. Health Sci. 2018, 14 (Suppl. 1), 201–206. [Google Scholar]
- Qian, K.; Shi, T.; He, S.; Luo, L.; Cao, Y. Release kinetics of tebuconazole from porous hollow silica nanospheres prepared by miniemulsion method. Microporous Mesoporous Mater. 2013, 169, 1–6. [Google Scholar] [CrossRef]
- Wanyika, H. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres. J. Nanopart. Res. 2013, 15, 1831. [Google Scholar] [CrossRef]
- Dar, J.; Soytong, K. Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. J. Agric. Technol. 2014, 10, 823–831. [Google Scholar]
- Liu, Y.; Yan, L.; Heiden, P.; Laks, P. Use of nanoparticles for controlled release of biocides in solid wood. J. Appl. Polym. Sci. 2001, 79, 458–465. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. The Use of Poly (N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12, 1114. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wu, C.; Wu, T.; Li, Y.; Chen, S.; Yuan, C.; Hu, Y. Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity. Carbohydr. Polym. 2018, 1, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Flores, F.C.; De Lima, J.A.; Ribeiro, R.F.; Alves, S.H.; Rolim, C.M.B.; Beck, R.C.R.; Da Silva, C.B. Antifungal Activity of Nanocapsule Suspensions Containing Tea Tree Oil on the Growth of Trichophyton rubrum. Mycopathologia 2013, 175, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, M. Role of microbes in plant protection using intersection of nanotechnology and biology. In Nanobiotechnology Applications in Plant Protection; Abd-Elsalam, K.A., Prasad, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 111–135. [Google Scholar]
- Abdullahi, A.; Ahmad, K.; Ismail, I.S.; Asib, N.; Ahmed, O.H.; Abubakar, A.I.; Siddiqui, Y.; Ismail, M.R. Potential of Using Ginger Essential Oils-Based Nanotechnology to Control Tropical Plant Diseases. Plant Pathol. J. 2020, 36, 515–535. [Google Scholar] [CrossRef]
- Casagrande, M.G.; De Lima, R. Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019, 7, 287. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Makwana, V.; Jain, R.; Patel, K.; Nivsarkar, M.; Joshi, A. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach. Int. J. Pharm. 2015, 495, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Bahrulolum, H.; Nooraei, S.; Javanshir, N.; Tarrahimofrad, H.; Mirbagheri, V.S.; Easton, A.J.; Ahmadian, G. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol. 2021, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- Cas tillo-Henriquez, L.; Alfaro-Aguilar, K.; Ugalde-Alvarez, J.; Vega-Fernandez, L.; Montes de Oca-Vasquez, G.; Vega-Baudrit, J.R. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 2020, 10, 1763. [Google Scholar] [CrossRef]
- Chen, H. Metal based nanoparticles in agricultural system: Behavior, transport, and interaction with plants. Chem. Speciat. Bioavailab. 2018, 30, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, I.F.; Hussein, M.Z.; Saifullah, B.; Idris, A.S.; Hilmi, N.H.Z.; Fakurazi, S. Synthesis of (hexaconazole-zinc/aluminum-layered double hydroxide nanocomposite) fungicide nanodelivery system for controlling Ganoderma disease in oil palm. J. Agric. Food Chem. 2018, 66, 806–813. [Google Scholar] [CrossRef]
- Mustafa, I.F.; Hussein, M.Z.; Seman, I.A.; Hilmi, N.H.Z.; Fakurazi, S. Synthesis of dazomet-zinc/aluminumlayered double hydroxide nanocomposite and its phytotoxicity effect on oil palm seed growth. ACS Sustain. Chem. Eng. 2018, 6, 16064–16072. [Google Scholar] [CrossRef]
- Ariffin, D.; Idris, S. Investigation on the control of Ganoderma with dazomet. In Proceedings of the PORIM International Palm Oil Conference. Progress, Prospects Challenges Towards the 21st Century. (Agriculture), Kuala Lumpur, Malaysia, 20–25 September 1993; p. L-0218. [Google Scholar]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Fakurazi, S.; Idris, A.S.; Hilmi, Z.; Hailini, N.; Jeffery Daim, L.D. Preparation of chitosan–hexaconazole nanoparticles as fungicide nanodelivery system for combating Ganoderma disease in oil palm. Molecules 2019, 24, 2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Fakurazi, S.; Idris, A.S.; Hilmi, N.H.Z.; Jeffery Daim, L.D. A potent antifungal agent for basal stem rot disease treatment in oil palms based on chitosan-dazomet nanoparticles. Int. J. Mol. Sci. 2019, 20, 2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azhari, M.A.; Putri, I.W.; Pratama, A.I.; Hidayah, R.E.; Ambarsari, L. Development of Trichodermin nanoemulsion based on medium chain triglycerides as antifungal of Ganoderma boninense in vitro. Curr. Biochem. 2019, 4, 2. [Google Scholar]
- Lee, K.W.; bin Omar, D.; bt Abdan, K.; Wong, M.Y. physiochemical characterization of nanoemulsion formulation of phenazine and their antifungal efficacy against Ganoderma boninense PER71 in vitro. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 3056–3066. [Google Scholar]
- Maluin, F.N.; Hussein, M.Z.; Idris, A.S. An Overview of the Oil Palm Industry: Challenges and Some Emerging Opportunities for Nanotechnology Development. Agronomy 2020, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Pinilla, C.M.B.; Lopes, N.A.; Brandelli, A. Lipid-Based Nanostructures for the Delivery of Natural Antimicrobials. Molecules 2021, 26, 3587. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov. Food Sci. Emerg. Technol. 2015, 28, 73–80. [Google Scholar] [CrossRef]
- Rahimi, V.; Hekmatimoghaddam, S.; Jebali, A.; Sadrabad, E.K.; Heydari, A.; Mohajeri, F.A. Chemical Composition and Antifungal Activity of Essential Oil of Zataria Multiflora. J. Nutr. Food Secur. 2019, 4, 1–6. [Google Scholar] [CrossRef]
- Adamu, A.; Ahmad, K.; Siddiqui, Y.; Ismail, I.S.; Asib, N.; Bashir Kutawa, A.; Adzmi, F.; Ismail, M.R.; Berahim, Z. Ginger Essential Oils-Loaded Nanoemulsions: Potential Strategy to Manage Bacterial Leaf Blight Disease and Enhanced Rice Yield. Molecules 2021, 26, 3902. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Kumar, V.; Prasad, K.S. Nanotechnology in sustainable agriculture: Present concerns and future aspects. Afr. J. Biotechnol. 2014, 13, 705–713. [Google Scholar]
- Acharya, A.; Pal, P.K. Agriculture nanotechnology: Translating research outcome to field applications by luencing environmental sustainability. NanoImpact 2020, 19, 100232. [Google Scholar] [CrossRef]
- Echeverria, J.; de Albuquerque, R.D.D.G. Nanoemulsions of essential oils: New tool for control of vector-borne diseases and in vitro effects on some parasitic agents. Medicines 2019, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Pedro, A.S.; Santo, I.E.; Silva, C.V.; Detoni, C.; Albuquerque, E. The use of nanotechnology as an approach for essential oil-based formulations with antimicrobial activity. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Médnez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; pp. 1364–1374. [Google Scholar]
- Lim, C.J.; Basri, M.; Omar, D.; Abdul Rahman, M.B.; Salleh, A.B.; Raja Abdul Rahman, R.N.Z. Physicochemical characterization and formation of glyphosate-laden nanoemulsion for herbicide formulation. Ind. Crops Prod. 2012, 36, 607–613. [Google Scholar] [CrossRef]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Nirmala, M.J.; Nagarajan, R. Recent research trends in fabrication and applications of plant essential oil based nanoemulsions. J. Nanomed. Nanotechnol. 2017, 8, 434. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A. Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol. 2012, 94, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.C.; Huang, D.W.; Wang, C.C.R.; Yeh, C.H.; Tsai, J.C.; Huang, Y.T.; Li, P.H. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J. Food Drug Anal. 2018, 26, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, V.; Rafiee-Dastjerdi, H.; Asadi, A.; Razmjou, J.; Fathi Achachlouei, B. Synthesis of Zingiber officinale essential oil-loaded nanofiber and its evaluation on the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). J. Crop Prot. 2018, 7, 39–49. [Google Scholar]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.; et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.S.; Swamy, M.K.; Sinniah, U.R. Natural Bio-Active Compounds; Springer Nature Singapore Pte Ltd.: Singapore, 2019; Volume 1, p. 589. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.A.; Ali, A.; Manickam, S.; Siddiqui, Y. Ultrasound-assisted chitosan–surfactant nanostructure assemblies: Towards maintaining postharvest quality of tomatoes. Food Bioprocess Technol. 2014, 7, 2102–2111. [Google Scholar] [CrossRef]
- Zahid, N.; Maqbool, M.; Ali, A.; Siddiqui, Y.; Abbas Bhatti, Q. Inhibition in production of cellulolytic and pectinolytic enzymes of Colletotrichum gloeosporioides isolated from dragon fruit plants in response to submicron chitosan dispersions. Sci. Hortic. 2019, 243, 314–319. [Google Scholar] [CrossRef]
- Ali, A.; Cheong, C.K.; Zahid, N. Composite Effect of Propolis and Gum Arabic to Control Postharvest Anthracnose and Maintain Quality of Papaya during Storage. Int. J. Agric. Biol. 2014, 16, 1117–1122. [Google Scholar]
- Ali, A.; Zahid, N.; Manickam, S.; Siddiqui, Y.; Alderson, P.G. Double Layer Coatings: A new technique for maintaining physico-chemical characteristics and antioxidant properties of dragon fruit during storage. Food Bioprocess Technol. 2014, 7, 2366–2374. [Google Scholar] [CrossRef]
- Mousa, A.A.; Hassan, A.; Mahindra, R.; Ernest, S.; Kamel, A.A. Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 2015, 29, 221–236. [Google Scholar]
- Kumari, M.; Ernest, V.; Mukherjee, A.; Chandrasekaran, N. In vivo nanotoxicity assays in plant models. Methods Mol. Biol. 2012, 926, 399–410. [Google Scholar]
- Park, H.-J.; Kim, S.H.; Kim, H.J.; Choi, S.-H. A new composition of nanosized silica-silver for control of various plant diseases plant. Pathol. J. 2006, 22, 295–302. [Google Scholar] [CrossRef]
- Corredor, E.; Testillano, P.S.; Coronado, M.-J.; González-Melendi, P.; Fernández-Pacheco, R.; Marquina, C.; Ibarra, M.R.; De La Fuente, J.M.; Rubiales, D.; de Luque, A.P.; et al. Nanoparticle penetration and transport in living pumpkin plants: In situ subcellular identification. BMC Plant Biol. 2009, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z.; Watanabe, F.; Biris, A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 2009, 3, 3221–3227. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007, 20, 1–8. [Google Scholar] [CrossRef]
- Ge, Y.; Schimel, J.P.; Holden, P.A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 2011, 45, 1659–1664. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Kim, S.; Lee, I. Effects of soil-plant interactive system on response to exposure to ZnO nanoparticles. J. Microbiol. Biotechnol. 2012, 22, 1264–1270. [Google Scholar] [CrossRef] [Green Version]
- Degrassi, G.; Bertani, I.; Devescovi, G.; Fabrizi, A.; Gatti, A.; Venturi, V. Response of plant-bacteria interaction models to nanoparticles. EQA 2012, 8, 39–50. [Google Scholar]
- Nowack, B.; Ranville, J.F.; Diamond, S.; Gallego-Urrea, J.A.; Metcalfe, C.; Rose, J.; Horne, N.; Koelmans, A.A.; Klaine, S.J. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 2012, 31, 50–59. [Google Scholar] [CrossRef] [PubMed]
- González-Melendi, P.; Fernández-Pacheco, R.; Coronado, M.J.; Corredor, E.; Testillano, P.S.; Risueño, M.C.; Marquina, C.; Ibarra, M.R.; Rubiales, D.; de Luque, A.P. Nanoparticles as smart treatment-delivery systems in plants; assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot. 2008, 101, 187–195. [Google Scholar] [CrossRef] [PubMed]
Nanomaterial | Preparation Method | Advantages | Disadvantages | Effect | Source(s) |
---|---|---|---|---|---|
Organic | |||||
Lipid Liposomes Lipopolyplexes Solid lipid nano-particles | Chemical: sonochemisty, reverse phase evaporation High-pressure homogenization | It involves the use of less toxic compounds, and the delivery of DNA, xenobiotics, pesticides, essential oils, and transfection | It requires substantial energy for effective disintegration of high-solid waste | Cytotoxicity | [20] |
Carbon nanotubes, Nanofibers, Carbon nanospheres, activated carbon, nanodots, graphene oxide and graphene layer | Arc-discharge, laser ablation, pyrolysis, chemical vapor deposition, and Carbonization | Biocatalysts, sensing, neural/orthopedic implants atomic force microscope probes | It requires the use of low pressure and noble gasses | Antimicrobial effect | [21] |
Synthetic Dendrimers (PAMAM, PPI) Polyethylene oxide Polyethylene glycol Polylactides Polyalklycyanoacrylates | - | Delivery of therapeutic/ diagnostic agents, pesticides delivery of DNA/RNA | Short half-lives, and lack of targeting capability | Cytotoxic effect | [22] |
Polymeric Natural Cellulose, Starch Gelatin, Albumin Chitin, chitosan | Chemical: suspension, emulsion, dispersion -precipitation | Biocompatible, biodegradable non-toxic for drug delivery delivery of DNA/RNA | Emulsions are thermodynamically unstable and therefore must be formulated to stabilize the emulsion from the separation of the two phases | Non-toxic/non-cytotoxic | [23] |
Inorganic | |||||
Clay Montmorillonite layered double hydroxides | Physical: exfoliation co-precipitation | Delivery of pesticides, fertilizers, plant growth promoting factors | - | inhibiting and synergistic effects | [24] |
Metal nanoparticles AgO, TiO2, ZnO, CeO2; Fe2O3 FePd, Fe–Ni (magnetic); Silica; CdTe, CdSe (QDs) | Physical: Arc-discharge, high energy ball milling, laser pyrolysis/ablation. Chemical: electrochemical, chemical vapor deposition sonochemistry, microemulsion sol-gel, reverse precipitation | Photothermal therapy, imaging studies, delivery of biomolecules (proteins, peptides nucleic acids), biosensors, diagnostic procedures, implants, pesticide degradation | It requires substantial energy for effective disintegration of high-solid waste, and the use of noble gas | Positive effect by promoting the growth of plants | [20] |
Magnetic type | |||||
Magnetic nanoparticle | Physical vapor deposition, mechanical attrition and chemical routes from solution | Photothermal therapy, Imaging studies, diagnostic procedures | special apparatus and formation of highly toxic gaseous as by-products | - | [18] |
Biosynthesized type | |||||
Biosynthesized nanoparticles (Silver and gold nanoparticles, Ag & Au NPs) | Ag+ ion reduction by culture supernatant of E. coli, gold ions reduction by Bacterial cell supernatant (Pseudomonas aeruginosa) | Delivery of pesticides and fertilizers. | Generally lower biosynthesis efficiency and lengthier production time Downstream processing of intracellular products is more complex and expensive | Antimicrobial effect | [25,26] |
Nanocellulose and Cellulose nanocrystal | - | Degrading of biomass/bio-waste from oil palm | It has limited flexibility, low thermal stability, brittleness and low crystallization rate, which hinders its use | No cytotoxic and ecotoxic effects | [27] |
Fungicide (FRAC Code) | Nanoparticles | Plant Species | Target Fungi | Soil Leaching or Toxicity | Advantages | Disadvantages | Source(s) |
---|---|---|---|---|---|---|---|
Carbendazim (1) Tebuconazole (3) | Polymeric and SLN | Bean seeds | - | Mouse fibroblast cells and soil sorption | A promising delivery system due to biocompatibility, and biodegradability of formulation constituents | Burst drug release from these nanocarriers may induce toxic effects | [69,70] |
Chitosan–Dazomet- hexaconozole | Hexaconozole, Dazomet and chitosan | Oil palm | Ganoderma boninense | - | Control release of the actives | High concentration may cause phytotoxicity | [59] |
Chitosan–Dazomet | Chitosan and Dazomet | Oil palm | G. boninense | - | It has high biocompatibility, and biodegradability of formulation constituents | High concentration may cause phytotoxicity | [59] |
Chitosan–hexaconozole | Chitosan and hexaconozole | Oil palm | G. boninense | - | Effective nanodelivery system | High concentration may cause phytotoxicity | [51] |
7 different volatile essential oils * | MSN | - | A. niger | - | Enhance the effectiveness of EOs against the fungal pthinkathogen | - | [67] |
Kaempferol * | Lecithin/Chitosan | - | F. oxysporum | - | Improve bioavailability, time-dependent release, and therapeutic activity | The requirement of chemical cross-linking agents and/or repeated washing and precipitation steps. | [64,71] |
Zataria multiflora essential oil * | SLN | - | A. niger, A. ochraceus, A. flavus, R. solani and R. stolonifera and A. solani. | - | A promising antifungal | - | [68] |
Ferbam (M 03) | Gold | Tea leaves | - | - | Ease of transporting small molecules to the target pathogens | The challenges of using gold as nanodelivery system include biodistribution, pharmacokinetics and possible toxicity | [72] |
Pyraclostrobin (11) | Chitosan/MSN | - | P. asparagi | - | A strong antifungal activity | High concentration may cause phytotoxicity | [73] |
Carbendazim (1) | Chitosan/Pectin | Cucumber Maize Tomato | A. parasiticus and F. oxysporum | - | Control release | Phytotoxicity | [74] |
Pyrimethanil (9) | MSN | Cucumber | - | - | It possesses a high surface area, large pore size, good biocompatibility and biodegradability | Cytotoxic effects | [75,76] |
Carbendazim (1) Metalaxyl (4) Myclobutanil (3) Tebuconazole (3) | Magnetic nanocomposites | - | - | - | It possesses a distinctive active sites for various reactions | - | [77] |
Prochloraz (3) | PHSN | Cucumber | B. cinerea | - | It facilitates the controlled nutrient transfer and increasing crop protection | High concentration may cause phytotoxicity | [78,79] |
Clove essential oil * | Chitosan | - | A. niger | - | Reduce volatility and enhance fungal disease control | - | [80] |
Tebuconazole (3) Propineb (M 03) Fludioxonil (12) | Silver | - | B. maydis | - | Control release of the actives | Low phytotoxic effect | [81] |
Cymbopogon martini essential oil * | Chitosan | Maize grains | F. graminearum | - | Reduce volatility and enhance fungal disease control | - | [82] |
Azoxystrobin (11) Difenoconazole (3) | PLA/PBS | - | - | Zebrafish | Improve biocompatibility | - | [83,84] |
Pyraclostrobin (11) | MSN | - | P. asparagi | - | It possesses a high surface area, large pore size, good biocompatibility and biodegradability | Cytotoxic effects | [85] |
Tebuconazole (3) | Bacterial ghosts | wheat, cucumber and Barley | L. nodorum, P. teres, S. fuliginea and E. graminis, | Barley (yellowing and necrosis) | It possesses a multifunctional delivery platforms | - | [62,86] |
Validamycin (26) | PHSN | - | - | - | It facilitates the controlled nutrient transfer and increasing crop protection | High concentration may cause phytotoxicity | [87] |
Validamycin (26) | Calcium carbonate | - | R. solani | - | Affordability and strong antimicrobial agent | Low toxicity | [87,88] |
Tebuconazole (3) | PHSN | - | - | - | It increases crop protection | Phytotoxicity | [89] |
Bioactive compounds from Chaetomium spp. * | PLA | - | - | - | Improve biocompatibility | - | [90] |
Metalaxyl (4) | MSN | - | - | Soil sorption | It possesses a high surface area, large pore size, good biocompatibility and biodegradability | Cytotoxic effects | [90] |
Pyraclostrobin (11) | Chitosan–PLA graft copolymer | - | C. gossypii Southw. | - | Improve biocompatibility | - | [63] |
Flusilazole (3) | Chitosan–PLA graft copolymer | - | - | - | Improve biocompatibility | - | [91] |
Bioactive compounds from Chaetomium spp. * | PLA | - | - | - | Enhance biodegradability | - | [90] |
Tebuconazole (3) Chlorothalonil (M 05) | PVP and PVP copolymer | Southern pine sapwood | G. trabeum | - | It has excellent solubility in solvents of different polarities, good binding properties, and a stabilizing effect | The high absorption of humidity due to the strong hygroscopicity and hydrophilicity of the PVP can cause problems such as microbial contamination | [92,93] |
Tebuconazole (3) Chlorothalonil (M 05) | PVP and PVP copolymer | Southern yellow pine | G. trabeum | - | It has excellent solubility in solvents of different polarities, good binding properties, and a stabilizing effect | The high absorption of humidity due to the strong hygroscopicity and hydrophilicity of the PVP can cause a problem such as microbial contamination | [66] |
Tebuconazole (3) Chlorothalonil (M 05) KATHON 930 (32) | PVC | Southern and Birch yellow pine | T. versicolor (Turkey tail) G. trabeum | - | The highly biodegradable and water-soluble polymer | - | [61] |
Tebuconazole (3) Chlorothalonil (M 05) | PVP and PVP copolymer | Southern and Birch yellow pine | T. versicolor (Turkey tail) G. trabeum | - | It has excellent solubility in solvents of different polarities, good binding properties, and a stabilizing effect | The high absorption of humidity due to the strong hygroscopicity and hydrophilicity of the PVP can cause problems such as microbial contamination | [65] |
Eugenol oil | Eugenol oil Nanoemulsion | Seed cotton | F. oxysporum F. vasinfectum | - | Displayed better antifungal activity compared to its conventional form | - | [94] |
Tea tree oil | Tea tree oil Nanocapsules | - | Tricophyton rubrum | - | Enhance the effectiveness of EOs against the fungal Pathogen | - | [95] |
Chitosan | Chitosan nanoemulsion Chitosan | - | Colletotrichum musae, C. gloeosporioides | - | The control efficacy was efficient due to the slow and persistent release of the active components from the nanoparticles | It has phytotoxic effect, when high concentration is used | [96] |
Origanum dictamnus Eos | Liposomes | - | R. solani, S. sclerotiorum, C. lunata | - | The control efficacy was about 80% due to the slow and persistent release of the active components from the nanoparticles | - | [97] |
Chitosan | Chitosan | - | Sclerotium rolfsii, Thanatephorus cucumeris, Fulvia fulva, R. stolonifer | - | Enhance the effectiveness of chitosan against the fungal Pathogens | It has phytotoxic effect, when high concentration is used | [97] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutawa, A.B.; Ahmad, K.; Ali, A.; Hussein, M.Z.; Abdul Wahab, M.A.; Adamu, A.; Ismaila, A.A.; Gunasena, M.T.; Rahman, M.Z.; Hossain, M.I. Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review. Biology 2021, 10, 881. https://doi.org/10.3390/biology10090881
Kutawa AB, Ahmad K, Ali A, Hussein MZ, Abdul Wahab MA, Adamu A, Ismaila AA, Gunasena MT, Rahman MZ, Hossain MI. Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review. Biology. 2021; 10(9):881. https://doi.org/10.3390/biology10090881
Chicago/Turabian StyleKutawa, Abdulaziz Bashir, Khairulmazmi Ahmad, Asgar Ali, Mohd Zobir Hussein, Mohd Aswad Abdul Wahab, Abdullahi Adamu, Abubakar A. Ismaila, Mahesh Tiran Gunasena, Muhammad Ziaur Rahman, and Md Imam Hossain. 2021. "Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review" Biology 10, no. 9: 881. https://doi.org/10.3390/biology10090881
APA StyleKutawa, A. B., Ahmad, K., Ali, A., Hussein, M. Z., Abdul Wahab, M. A., Adamu, A., Ismaila, A. A., Gunasena, M. T., Rahman, M. Z., & Hossain, M. I. (2021). Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review. Biology, 10(9), 881. https://doi.org/10.3390/biology10090881