Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications
Abstract
:1. Introduction
Silica (SiO2 based) | Tellurite (TeO2 based) | Fluoride (ZrF4 or AlF3 based) | Chalcogenide (chalcogen S, Se, Te based) | |
---|---|---|---|---|
Refractive index n at 1.55 µm | 1.46 | 2–2.2 | 1.5–1.6 | 2.3–3 |
Nonlinear refractive index n2 (× 10−20 m2/W) | 2.5 | 20–50 | 2–3 | 100–1000 |
λ0, zero dispersion wavelength of material (µm) | ~1.3 | ~2 | ~1.7 | >5 |
IR longwave transmission limit | up to 3 µm | 6–7 µm | 7–8 µm | 12–16 µm |
Thermal stability for fiber drawing | excellent | good | poor | good |
Viscosity around fiber drawing temperature | flat | steep | steep | flat |
Durability in environment | excellent | good | poor, hygroscopic | good |
Toxicity | safe | safe | relatively high | relatively high |
2. Experimental Section
3. Results and Discussion
3.1. OH-Induced Attenuation in Dehydrated Tellurite Bulks and Unclad Fiber
3.2. Refractive Index, Dispersion and Nonlinearity of Dehydrated Tellurite Glasses
Sellmeier coefficients Glass | B1 | C1 | B2 | C2 | B3 | C3 |
---|---|---|---|---|---|---|
TLX | 1.212 | 6.068 × 10−2 | 2.157 | 7.068 × 10−4 | 0.1891 | 45.19 |
3.3. Raman Gain Coefficients of Dehydrated Tellurite Glasses
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nature Photon. 2012, 6, 440–449. [Google Scholar] [CrossRef]
- Russell, P.S.J. Photonic crystal fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef]
- Ranka, J.K.; Windeler, R.S.; Stentz, A.J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 2000, 25, 25–27. [Google Scholar] [CrossRef]
- Serkland, D.K.; Kumar, P. Tunable fiber-optic parametric oscillator. Opt. Lett. 1999, 24, 92–94. [Google Scholar] [CrossRef]
- Cundiff, S.T.; Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 2003, 75, 325–342. [Google Scholar] [CrossRef]
- Szigeti, B. Polarisability and dielectric constant of ionic crystals. Trans. Faraday Soc. 1949, 45, 155–166. [Google Scholar] [CrossRef]
- Boniort, J.Y.; Brehm, C.; DuPont, P.H.; Guignot, D.; Le Sergent, C. Infrared Glass Optical Fibers for 4 and 10 Micron Bands. In Proceedings of the 6th European Conference on Optical Communication, York, UK, 16–19 September 1980; pp. 61–64.
- Poulain, M.; Poulain, M.; Lucas, J.; Brun, P. Verres fluores au tetrafluorure de zirconium proprietes optiques d’un verre dope au Nd3+. Mat. Res. Bull. 1975, 10, 243–246. (in French). [Google Scholar] [CrossRef]
- Kapany, N.S.; Simms, R.J. Recent developments of infrared fiber optics. Infrared Phys. 1965, 5, 69–75. [Google Scholar]
- Wang, J.S.; Vogel, E.M.; Snitzer, E. Tellurite glass: A new candidate for fiber devices. Opt. Mater. 1994, 3, 187–203. [Google Scholar] [CrossRef]
- Ghosh, G. Sellmeier coefficients and chromatic dispersions for some tellurite glasses. J. Am. Ceram. Soc. 1995, 78, 2828–2830. [Google Scholar] [CrossRef]
- Feng, X.; Loh, W.H.; Flanagan, J.C.; Camerlingo, A.; Dasgupta, S.; Petropoulos, P.; Horak, P.; Frampton, K.E.; White, N.M.; Price, J.H.V.; et al. Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications. Opt. Express 2008, 16, 13651–13656. [Google Scholar] [CrossRef]
- Feng, X.; Flanagan, J.C.; Frampton, K.E.; Petropoulos, P.; White, N.M.; Price, J.H.V.; Loh, W.H.; Rutt, H.N.; Richardson, D.J. Developing single-mode tellurite glass holey fiber for infrared nonlinear applications. Adv. Sci. Technol. 2008, 55, 108–117. [Google Scholar] [CrossRef]
- France, P.W.; Carter, S.F.; Williams, J.R.; Beales, K.J.; Parker, J.M. OH-absorption in fluoride glass infra-red fibres. Electron. Lett. 1984, 20, 607–608. [Google Scholar] [CrossRef]
- Feng, X.; Tanabe, S.; Hanada, T. Hydroxyl groups in erbium-doped germanotellurite glasses. J. Non-Crystall. Solids 2001, 281, 48–54. [Google Scholar] [CrossRef]
- Humbach, O.; Fabian, H.; Grzesik, U.; Haken, U.; Heitmann, W. Analysis of OH absorption bands in synthetic silica. J. Non-Crystall. Solids 1996, 203, 19–26. [Google Scholar] [CrossRef]
- Domachuk, P.; Wolchover, N.A.; Cronin-Golomb, M.; Wang, A.; George, A.K.; Cordeiro, C.M.B.; Knight, J.C.; Omenetto, F.G. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 2008, 16, 7161–168. [Google Scholar] [CrossRef]
- Ebendorff-Heidepriem, H.; Kuan, K.; Oermann, M.R.; Knight, K.; Monro, T.M. Extruded tellurite glass and fibers with low OH content for mid-infrared applications. Opt. Mater. Express 2012, 2, 432–442. [Google Scholar]
- Comyns, A.E. Fluoride glasses; Wiley: Hoboken, NJ, USA, 1989; pp. 84–85. [Google Scholar]
- Nagel, S.; MacChesney, J.B.; Walker, K. An overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE Trans. Microwave Theory Tech. 1982, 18, 459–476. [Google Scholar]
- O’Donnell, M.D.; Miller, C.A.; Furniss, D.; Tikhomirov, V.K.; Seddon, A.B. Fluorotellurite glasses with improved mid-infrared transmission. J. Non-Crystall. Solids 2003, 331, 48–57. [Google Scholar] [CrossRef]
- Brown, T.L.; Lemay, H.E.; Burnsten, B.E. Chemistry—the Central Science., 6th ed.; Prentice Hall: New York, NY, USA, 1994; p. 1017. [Google Scholar]
- Boling, N.L.; Glass, A.J.; Owyoung, A. Empirical relationships for predicting non-linear refractive-index changes in optical solids. IEEE J. Quantum Electron. 1978, QE-14, 601–608. [Google Scholar]
- Kiang, K.M.; Frampton, K.; Monro, T.M.; Moore, R.; Tucknott, J.; Hewak, D.W.; Richardson, D.J.; Rutt, H.N. Extruded single-mode non-silica glass holey optical fibres. Electron. Lett. 2002, 38, 546–547. [Google Scholar] [CrossRef]
- Shi, J.; Feng, X.; Horak, P.; Chen, K.K.; Teh, P.S.; Alam, S.-U.; Loh, W.H.; Richardson, D.J.; Ibsen, M. 1.06 µm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient. J. Lightwave Technol. 2011, 29, 3461–3469. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Feng, X.; Shi, J.; Segura, M.; White, N.M.; Kannan, P.; Calvez, L.; Zhang, X.; Brilland, L.; Loh, W.H. Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications. Fibers 2013, 1, 70-81. https://doi.org/10.3390/fib1030070
Feng X, Shi J, Segura M, White NM, Kannan P, Calvez L, Zhang X, Brilland L, Loh WH. Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications. Fibers. 2013; 1(3):70-81. https://doi.org/10.3390/fib1030070
Chicago/Turabian StyleFeng, Xian, Jindan Shi, Martha Segura, Nicolas M. White, Pradeesh Kannan, Laurent Calvez, Xianghua Zhang, Laurent Brilland, and Wei H. Loh. 2013. "Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications" Fibers 1, no. 3: 70-81. https://doi.org/10.3390/fib1030070
APA StyleFeng, X., Shi, J., Segura, M., White, N. M., Kannan, P., Calvez, L., Zhang, X., Brilland, L., & Loh, W. H. (2013). Towards Water-Free Tellurite Glass Fiber for 2–5 μm Nonlinear Applications. Fibers, 1(3), 70-81. https://doi.org/10.3390/fib1030070