Synthesis and Properties of Electrodeposited Ni–Co/WS2 Nanocomposite Coatings
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussions
3.1. Linear Sweep Voltammetric (LSV) Analysis
3.2. Morphology and Structure
3.3. Compositional Analysis
3.4. Tribological Performance
3.5. Wettability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tian, L.; Xu, J.; Xiao, S. The influence of pH and bath composition on the properties of Ni–Co coatings synthesized by electrodeposition. Vacuum 2011, 86, 27–33. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Xue, Q.; Liu, H.; Xu, T. Microstructure and tribological properties of electrodeposited Ni–Co alloy deposits. Appl. Surf. Sci. 2005, 242, 326–332. [Google Scholar] [CrossRef]
- Go, E.; Ramirez, J.; Valle, E. Electrodeposition of Co–Ni alloys. J. Appl. Electrochem. 1998, 28, 71–79. [Google Scholar]
- He, Y.; Wang, S.C.; Walsh, F.C.; Li, W.S.; He, L.; Reed, P.A.S. The monitoring of coating health by in situ luminescent layers. RSC Adv. 2015, 5, 42965–42970. [Google Scholar] [CrossRef]
- Correia, A.N.; Machado, S.A.S. Electrodeposition and characterisation of thin layers of Ni–Co alloys obtained from dilute chloride baths. Electrochim. Acta 2000, 45, 1733–1740. [Google Scholar] [CrossRef]
- Qiao, G.; Jing, T.; Wang, N.; Gao, Y.; Zhao, X.; Zhou, J.; Wang, W. High-speed jet electrodeposition and microstructure of nanocrystalline Ni–Co alloys. Electrochim. Acta 2005, 51, 85–92. [Google Scholar] [CrossRef]
- Hibbard, G.D.; Aust, K.T.; Erb, U. Thermal stability of electrodeposited nanocrystalline Ni–Co alloys. Mater. Sci. Eng. A 2006, 433, 195–202. [Google Scholar] [CrossRef]
- Ma, C.; Wang, S.C.; Walsh, F.C. Electrodeposition of nanocrystalline nickel–cobalt binary alloy coatings: A review. Trans. IMF 2015, 93, 104–112. [Google Scholar] [CrossRef]
- Chen, W.X.; Tu, J.P.; Wang, L.Y.; Gan, H.Y.; Xu, Z.D.; Zhang, X.B. Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 2003, 41, 215–222. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Alipour, S.; Safarzadeh, A.; Kim, H.S. Wear and friction behavior of self-lubricating hybrid Cu-(SiC + xCNT) composites. Compos. Part B Eng. 2019, 158, 92–101. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, L.; Hu, W.; Shen, B. Friction and wear behavior of Ni–graphite composites prepared by electroforming. Mater. Des. 2007, 28, 1374–1378. [Google Scholar] [CrossRef]
- Sun, W.C.; Zhang, P.; Zhao, K.; Tian, M.M.; Wang, Y. Effect of graphite concentration on the friction and wear of Ni–Al2O3/graphite composite coatings by a combination of electrophoresis and electrodeposition. Wear 2015, 342, 172–180. [Google Scholar] [CrossRef]
- He, Y.; Wang, S.C.; Walsh, F.C.; Chiu, Y.L.; Reed, P.A.S. Self-lubricating Ni-P-MoS2 composite coatings. Surf. Coat. Technol. 2016, 307, 926–934. [Google Scholar] [CrossRef]
- Redlich, M.; Gorodnev, A.; Feldman, Y.; Kaplanashiri, I.; Tenne, R.; Fleischer, N.; Genut, M.; Feuerstein, N. Friction reduction and wear resistance of electro-co-deposited inorganic fullerene-like WS2 coating for improved stainless steel orthodontic wires. J. Mater. Res. 2008, 23, 2909–2915. [Google Scholar] [CrossRef]
- Mai, Y.J.; Zhou, M.P.; Ling, H.J.; Chen, F.X.; Lian, W.Q.; Jie, X.H. Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance. Appl. Surf. Sci. 2018, 433, 232–239. [Google Scholar] [CrossRef]
- García-Lecina, E.; García-Urrutia, I.; Díez, J.A.; Fornell, J.; Pellicer, E.; Sort, J. Codeposition of inorganic fullerene-like WS2 nanoparticles in an electrodeposited nickel matrix under the influence of ultrasonic agitation. Electrochim. Acta 2013, 114, 859–867. [Google Scholar] [CrossRef]
- Tudela, I.; Zhang, Y.; Pal, M.; Kerr, I.; Cobley, A.J. Ultrasound-assisted electrodeposition of thin nickel-based composite coatings with lubricant particles. Surf. Coat. Technol. 2015, 276, 89–105. [Google Scholar] [CrossRef]
- Roy, D.; Das, A.K.; Saini, R.; Singh, P.K.; Kumar, P.; Hussain, M.; Mandal, A.; Dixit, A.R. Pulse current co-deposition of Ni–WS2 nano-composite film for solid lubrication. Mater. Manuf. Proc. 2017, 32, 365–372. [Google Scholar] [CrossRef]
- He, Y.; Sun, W.T.; Wang, S.C.; Reed, P.A.S.; Walsh, F.C. An electrodeposited Ni–P/WS2 coating with combined super-hydrophobicity and self-lubricating properties. Electrochim. Acta 2017, 245, 872–882. [Google Scholar] [CrossRef]
- Zhao, G.; Xue, Y.; Huang, Y.; Ye, Y.; Walsh, F.C.; Chen, J.; Wang, S. One-step electrodeposition of a self-cleaning and corrosion resistant Ni/WS2 superhydrophobic surface. RSC Adv. 2016, 6, 439–443. [Google Scholar] [CrossRef]
- Shi, L.; Sun, C.F.; Gao, P.; Zhou, F.; Liu, W.M. Electrodeposition and characterization of Ni–Co–carbon nanotubes composite coatings. Surf. Coat. Technol. 2006, 200, 4870–4875. [Google Scholar] [CrossRef]
- Golodnitsky, D.; Yu, R.; Ulus, A. The role of anion additives in the electrodeposition of nickel–cobalt alloys from sulfamate electrolyte. Electrochim. Acta 2003, 47, 2707–2714. [Google Scholar] [CrossRef]
- Gómez, E.; Pané, S.; Vallés, E. Electrodeposition of Co–Ni and Co–Ni–Cu systems in sulphate–citrate medium. Electrochim. Acta 2006, 51, 146–153. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Shirtcliffe, N.J.; McHale, G.; Newton, M.I.; Chabrol, G.; Perry, C.C. Dualscale roughness produces unusually water repellent surfaces. Adv. Mater. 2004, 16, 1929–1932. [Google Scholar] [CrossRef]
Element (wt.%) | Ni-Co | Ni-Co/WS2 1.2 wt.% | Ni-Co/WS2 2.3 wt.% | Ni-Co/WS24.8 wt.% | Ni-Co/WS26.7 wt.% | Ni-Co/WS27.1 wt.% |
---|---|---|---|---|---|---|
Ni K | 22.1 | 28.5 | 47.3 | 48.5 | 57.5 | 58.2 |
Co K | 21.9 | 25.7 | 40.9 | 41.6 | 31.6 | 31.3 |
W M | – | 0.9 | 1.5 | 4.4 | 5.8 | 6.9 |
S K | – | 0.3 | 0.5 | 1.5 | 2.1 | 1.9 |
O K | 23.0 | 17.1 | 4.8 | 4.0 | 3.0 | 1.8 |
Fe K | 33.0 | 27.5 | 5.1 | – | – | – |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Wang, S.; Sun, W.; Reed, P.A.S.; Walsh, F.C. Synthesis and Properties of Electrodeposited Ni–Co/WS2 Nanocomposite Coatings. Coatings 2019, 9, 148. https://doi.org/10.3390/coatings9020148
He Y, Wang S, Sun W, Reed PAS, Walsh FC. Synthesis and Properties of Electrodeposited Ni–Co/WS2 Nanocomposite Coatings. Coatings. 2019; 9(2):148. https://doi.org/10.3390/coatings9020148
Chicago/Turabian StyleHe, Yang, Shuncai Wang, Wanting Sun, Philippa A.S. Reed, and Frank C. Walsh. 2019. "Synthesis and Properties of Electrodeposited Ni–Co/WS2 Nanocomposite Coatings" Coatings 9, no. 2: 148. https://doi.org/10.3390/coatings9020148
APA StyleHe, Y., Wang, S., Sun, W., Reed, P. A. S., & Walsh, F. C. (2019). Synthesis and Properties of Electrodeposited Ni–Co/WS2 Nanocomposite Coatings. Coatings, 9(2), 148. https://doi.org/10.3390/coatings9020148