A Comparative Study on the Impact of Different Antifreeze Agents on Composite Cement at −10 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Setting Time
2.2.2. Compressive Strength
2.2.3. Freezing Point
2.2.4. X-Ray Diffraction
2.2.5. Scanning Electron Microscopy
3. Results
3.1. Setting Time
3.2. Compressive Strength
3.3. Freezing Point
3.4. XRD Analysis
3.5. SEM Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, H.; Zhang, W.; Hama, Y. Method for determining early-age frost damage of concrete by using air-permeability index and influence of early-age frost damage on concrete durability. Constr. Build. Mater. 2017, 153, 630–639. [Google Scholar]
- Elshazly, M.A.; Elakhras, A.A.; Elshami, A.A.; Ahmad, S.S.E.; Elmahdy, M.A.R. Investigating the effectiveness of a bacterial self-healing mechanism for repairing cracks in sustainable cement mortar at low temperatures. Results Eng. 2025, 25, 103907. [Google Scholar]
- Kothari, A.; Hedlund, H.; Illikainen, M.; Cwirzen, A. Effects of sodium nitrate and OPC-GGBS concrete mix composition on phase transition of pore water at subzero temperatures. Constr. Build. Mater. 2022, 327, 126901. [Google Scholar] [CrossRef]
- Alzaza, A.; Ohenoja, K.; Isteri, V.; Hanein, T.; Geddes, D.; Poikelispää, M.; Illikainen, M. Blending eco-efficient calcium sulfoaluminate belite ferrite cement to enhance the physico–mechanical properties of Portland cement paste cured in refrigerated and natural winter conditions. Cem. Concr. Compos. 2022, 129, 104469. [Google Scholar]
- Liu, Y.; Sun, F.; Yu, K.; Yang, Y. Experimental and numerical research on development of synthetic heat storage form incorporating phase change materials to protect concrete in cold weather. Renew. Energy 2020, 149, 1424–1433. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, S.; Lei, Y.; Shi, C.; Li, G.; Hanif, A. Optimizing anti-freezing agent on the properties of Portland cement-calcium sulphoaluminate cement system based on Taguchi-GRA method. Case Stud. Constr. Mater. 2024, 20, e02998. [Google Scholar]
- Nishat, F.M.; Chakraborty, R.; Oh, H.-J.; Yoo, D.-Y.; Mohapoo, R.; Yeon, J.H. Design and performance evaluation of an electrically heated concrete panel for sustainable winter maintenance. Dev. Built Environ. 2023, 16, 100259. [Google Scholar] [CrossRef]
- Wang, T.; Liao, C.; Qi, X.; Zhang, Y. Predicting the effect of promoting ultra-low energy buildings in hot summer and warm winter regions on CO2 emission. Energy Sustain. Dev. 2025, 85, 101646. [Google Scholar]
- Zhang, G.; Yang, H.; Ju, C.; Yang, Y. Novel selection of environment-friendly cementitious materials for winter construction: Alkali-activated slag/Portland cement. J. Clean. Prod. 2020, 258, 120592. [Google Scholar]
- Li, L.; Wang, C.; Zhao, Z.; Dang, L.; He, R. Hydration behavior and micro-pore structural of Portland cement composites with crystalline nano-SiO2 at low temperature. J. Build. Eng. 2024, 98, 111276. [Google Scholar]
- Liu, Z.; Lou, B.; Barbieri, D.M.; Sha, A.; Ye, T.; Li, Y. Effects of pre-curing treatment and chemical accelerators on Portland cement mortars at low temperature (5 °C). Constr. Build. Mater. 2020, 240, 117893. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Song, Z.; Shi, C.; Zhang, A. Improvement of workability and early strength of calcium sulphoaluminate cement at various temperature by chemical admixtures. Constr. Build. Mater. 2018, 160, 427–439. [Google Scholar] [CrossRef]
- Isteri, V.; Ohenoja, K.; Hanein, T.; Kinoshita, H.; Kletti, H.; Rößler, C.; Tanskanen, P.; Illikainen, M.; Fabritius, T. Ferritic calcium sulfoaluminate belite cement from metallurgical industry residues and phosphogypsum: Clinker production, scale-up, and microstructural characterisation. Cem. Concr. Res. 2022, 154, 106715. [Google Scholar] [CrossRef]
- Kim, N.; Seo, J.; Lee, H.K. Enhancement in clinker hydration degrees and later stage-ettringite stability of calcium sulfoaluminate cements by the incorporation of dolomite. Cem. Concr. Compos. 2025, 155, 105815. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, C.; Tan, H.; Liu, X. Potential application of Portland cement-sulfoaluminate cement system in precast concrete cured under ambient temperature. Constr. Build. Mater. 2020, 251, 118869. [Google Scholar] [CrossRef]
- Chaunsali, P.; Mondal, P. Physico-chemical interaction between mineral admixtures and OPC–calcium sulfoaluminate (CSA) cements and its influence on early-age expansion. Cem. Concr. Res. 2016, 80, 10–20. [Google Scholar] [CrossRef]
- Alzaza, A.; Ohenoja, K.; Langås, I.; Arntsen, B.; Poikelispää, M.; Illikainen, M. Low-temperature (−10 °C) curing of Portland cement paste—Synergetic effects of chloride-free antifreeze admixture, C-S-H seeds, and room-temperature pre-curing. Cem. Concr. Compos. 2022, 125, 104319. [Google Scholar] [CrossRef]
- Khan, J.; Kumar, S.G. Influence of binary antifreeze admixtures on strength performance of concrete under cold weather conditions. J. Build. Eng. 2021, 34, 102055. [Google Scholar] [CrossRef]
- Karagol, F.; Demirboga, R.; Khushefati, W.H. Behavior of fresh and hardened concretes with antifreeze admixtures in deep-freeze low temperatures and exterior winter conditions. Constr. Build. Mater. 2015, 76, 388–395. [Google Scholar] [CrossRef]
- Polat, R. The effect of antifreeze additives on fresh concrete subjected to freezing and thawing cycles. Cold Reg. Sci. Technol. 2016, 127, 10–17. [Google Scholar] [CrossRef]
- Demirboğa, R.; Karagöl, F.; Polat, R.; Kaygusuz, M.A. The effects of urea on strength development of fresh concrete under cold weather conditions. Constr. Build. Mater. 2014, 64, 114–120. [Google Scholar] [CrossRef]
- Poirier, M.; Blotevogel, S.; Noiriel, C.; Bonnin, A.; Kaknics, J.; Olbinado, M.; Steger, L.; Patapy, C.; Cyr, M. Synchrotron X-ray micro-tomography investigation of the early hydration of blended cements: A case study on CaCl2-accelerated slag-based blended cements. Constr. Build. Mater. 2022, 321, 126412. [Google Scholar]
- Wang, H.; Tong, M. Properties and field application of the grouting material for water blocking during thawing of frozen wall of deep sand layer. Arab. J. Geosci. 2021, 14, 1–12. [Google Scholar]
- Gómez-Luna, G.F.; Lopez-Calvo, H.Z.; Bremner, T.W.; Castro-Borges, P.; Montes-García, P. Performance of fly ash and CNI as corrosion prevention methods for steel reinforcement embedded in cracked HPC concrete exposed to a natural marine environment. Constr. Build. Mater. 2024, 428, 136260. [Google Scholar]
- Vu, T.H.; Dang, L.C.; Kang, G.; Sirivivatnanon, V. Chloride-induced corrosion of steel reinforcement in alkali-activated slag concretes: A critical review. Case Stud. Constr. Mater. 2022, 16, e01112. [Google Scholar]
- Jiang, M.; Liu, X.; Hang, M.; Xu, Y.; Lai, G.; Li, S. Performance and deterioration mechanism of concrete incorporated with corrosion-inhibiting admixtures under the coupling effect of composite salt and freeze-thaw cycles. J. Build. Eng. 2023, 69, 106329. [Google Scholar]
- Zhang, Y.; Wang, Y.; Li, T.; Xiong, Z.; Sun, Y. Effects of lithium carbonate on performances of sulphoaluminate cement-based dual liquid high water material and its mechanisms. Constr. Build. Mater. 2018, 161, 374–380. [Google Scholar]
- Shen, Y.; Zhang, W.; Wang, P.; Chen, X.; Zhu, H. Influence of lithium salt on the performance of calcium sulfoaluminate cement. J. Therm. Anal. Calorim. 2022, 147, 1–9. [Google Scholar]
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). Standards Press of China: Beijing, China, 2021.
- Ming, X.; Li, Y.; Liu, Q.; Wang, M.; Cai, Y.; Chen, B.; Li, Z. Chloride binding behaviors and early age hydration of tricalcium aluminate in chloride-containing solutions. Cem. Concr. Compos. 2023, 137, 104928. [Google Scholar]
- Karagöl, F.; Demirboğa, R.; Kaygusuz, M.A.; Yadollahi, M.M.; Polat, R. The influence of calcium nitrate as antifreeze admixture on the compressive strength of concrete exposed to low temperatures. Cold Reg. Sci. Technol. 2013, 89, 30–35. [Google Scholar]
- Thomas, J.J.; Allen, A.J.; Jennings, H.M. Hydration kinetics and microstructure development of normal and CaCl2-accelerated tricalcium silicate pastes. J. Phys. Chem. C 2009, 113, 19836–19844. [Google Scholar]
- Saha, O.; Boulfiza, M.; Wegner, L.D. Tracking the hydration of antifreeze treated cement paste at subfreezing temperatures using the TDR technique. Constr. Build. Mater. 2020, 262, 119915. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2Oeq | f-CaO | Loss |
---|---|---|---|---|---|---|---|---|
20.84 | 4.68 | 3.56 | 63.43 | 3.29 | 2.30 | 0.55 | 0.78 | 1.48 |
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | P2O5 | TiO2 | MnO2 | SrO | Cl− |
---|---|---|---|---|---|---|---|---|---|---|---|
8.24 | 23.27 | 2.20 | 45.57 | 1.96 | 15.70 | 0.42 | 0.09 | 1.48 | 0.046 | 0.13 | 0.08 |
Antifreeze Agent | Dosage | Freezing Point |
---|---|---|
Blank | / | −0.1 |
CaCl2 | 0.5 | −1.7 |
1.0 | −1.2 | |
1.5 | −2.5 | |
2.0 | −3.2 | |
NaNO2 | 1.0 | −2.3 |
2.0 | −3.1 | |
3.0 | −4.1 | |
4.0 | −4.9 | |
Li2CO3 | 0.1 | −1.8 |
0.2 | −2 | |
0.4 | −2.3 | |
0.6 | −1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Du, Y.; Liu, D.; Hu, Y. A Comparative Study on the Impact of Different Antifreeze Agents on Composite Cement at −10 °C. Coatings 2025, 15, 371. https://doi.org/10.3390/coatings15040371
Zhang B, Du Y, Liu D, Hu Y. A Comparative Study on the Impact of Different Antifreeze Agents on Composite Cement at −10 °C. Coatings. 2025; 15(4):371. https://doi.org/10.3390/coatings15040371
Chicago/Turabian StyleZhang, Bitao, Yongkang Du, Dong Liu, and Yanyan Hu. 2025. "A Comparative Study on the Impact of Different Antifreeze Agents on Composite Cement at −10 °C" Coatings 15, no. 4: 371. https://doi.org/10.3390/coatings15040371
APA StyleZhang, B., Du, Y., Liu, D., & Hu, Y. (2025). A Comparative Study on the Impact of Different Antifreeze Agents on Composite Cement at −10 °C. Coatings, 15(4), 371. https://doi.org/10.3390/coatings15040371