RETRACTED: Study on the Alloying Elements Competition Mechanism of Nix1Crx2Cox3Al15Ti10 Alloys Based on High-Throughput Computation and Numerical Analysis
Abstract
1. Introduction
2. Computational Details
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, T.; Zheng, S.J.; Pang, J.Y.; Ma, X.L. High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure. Scr. Mater. 2020, 186, 336–340. [Google Scholar] [CrossRef]
- Ku, M.H.; Ni, K.; Lin, Q.E.; Chang, S.H.; Hsu, T.W.; Li, C.L.; Wang, C.K.; Wu, M.W. Novel laser powder bed fusion Corrax maraging stainless steel lattice with superior specific strength and energy absorption. J. Mater. Res. Technol. 2023, 25, 5240–5248. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, J.I.; Shinohara, Y.; Hagio, T.; Umehara, N.; Ichino, R. Super hardening of Fe-W alloy plating by phase transformation of amorphous to metal carbides-dispersed nanocrystalline alloys and application as promising alternative for hard chromium plating. Surf. Coat. Technol. 2024, 477, 130388. [Google Scholar] [CrossRef]
- Li, Q.K.; Huang, Z.B.; Xie, M.D.; Ye, W.T.; Zhou, Q.; Qiu, L.S.; Qian, D.; Pinto, H.C.; Song, Z.X.; Wang, H.F. A VCoNiN multi-principal nitride film with excellent wear performance. Surf. Coat. Technol. 2023, 475, 130130. [Google Scholar] [CrossRef]
- Kim, R.E.; Gu, G.H.; Choi, Y.T.; Lee, J.A.; Kim, H.S. Superior tensile properties and formability synergy of high-entropy alloys through inverse-gradient structures via laser surface treatment. Scr. Mater. 2023, 234, 115587. [Google Scholar] [CrossRef]
- Zhang, C.L.; Zhang, J.Y.; Bao, X.Y.; Li, J.; Zhang, D.D.; Liu, G.; Sun, J. Hierarchically ordered coherent interfaces-driven ultrahigh specific-strength and toughness in a nano-martensite titanium alloy. Acta Mater. 2024, 263, 119540. [Google Scholar] [CrossRef]
- Che, M.J.; Du, X.J.; Ma, H.Y.; He, Y.Z. Superior pitting corrosion resistance of ultra-high strength low alloy steel via Co-alloying Al and Cu. JOM 2023, 75, 4287–4299. [Google Scholar] [CrossRef]
- Rezaei-Baravati, A.; Kasiri-Asgarani, M.; Bakhsheshi-Rad, H.R.; Omidi, M.; Karamian, E. Microstructure, biodegradation, and mechanical properties of biodegradable Mg-based alloy containing calcium for biomedical applications. Phys. Mesomech. 2023, 26, 176–195. [Google Scholar] [CrossRef]
- Tong, Z.P.; Zhang, Y.Z.; Liu, H.L.; Wan, W.B.; Zhou, W.F.; Ye, Y.X.; Ren, X.D. Laser shock peening of AlCoCrCuFeNi high-entropy alloy fabricated by laser powder bed fusion: An enhanced oxidation-resistance mechanism at high-temperature. Corros. Sci. 2024, 226, 111667. [Google Scholar] [CrossRef]
- Wu, J.F.; Yu, J.Q.; Zhang, Q.K.; Xu, X.H.; Shen, Y.Q.; Zhou, Y. High-temperature stability of Cu-20Si alloy-corundum ceramic composite thermal storage materials. Ceram. Int. 2024, 50, 3950–3957. [Google Scholar] [CrossRef]
- Li, R.X.; Ren, Z.; Wu, Y.; He, Z.B.; Liaw, P.K.; Ren, J.L.; Zhang, Y. Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al-Zn-Li-Mg-Cu alloy. Mater. Sci. Eng. A 2021, 802, 140637. [Google Scholar] [CrossRef]
- De Medeiros, M.D.; Septimio, R.; Da Silva, C.A.P.; Spinelli, J.E.; Cheung, N.; Garcia, A.; Silva, B.L. Modifications on solidification thermal parameters, microstructure and hardness induced by Cu additions to a hypereutectic Zn-8Al alloy. Mater. Charact. 2021, 174, 110936. [Google Scholar] [CrossRef]
- Li, C.C.; Xia, Z.H.; Qiao, X.G.; Golovin, I.S.; Zheng, M.Y. Superior ductility Mg-Mn extrusion alloys at room temperature obtained by controlling Mn content. Mater. Sci. Eng. A 2023, 869, 144508. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Z.; Jia, H.D.; Gao, R.; Ran, M.R.; Zeng, X.Q.; Lozano-Perez, S.; Zheng, W.Y.; Zhou, Z.J. The effect of surface grinding and Si addition on the corrosion of Fe-12Cr ODS steels in supercritical CO2. Corros. Sci. 2023, 224, 111533. [Google Scholar] [CrossRef]
- Xu, W.L.; Su, C.; Chen, X.H.; Tan, J.; Feng, L.; Wen, C.; Bai, J.Y.; Pan, F.S. Achieving superior elevated-temperature strength of Mg-12Gd-3Y alloys by Nd addition. Mater. Sci. Eng. A 2023, 867, 144730. [Google Scholar] [CrossRef]
- Yin, M.J.; Liang, W.P.; Miao, Q.; Yu, H.Y.; Yao, W.; Zang, K.; Sun, Y.Y.; Ma, Y.Y.; Wu, Y.T.; Gao, X.G.; et al. Microstructure, mechanical and tribological behavior of CrHfNbTaTiCxNy high-entropy carbonitride coatings prepared by double glow plasma alloy. Wear 2023, 523, 204751. [Google Scholar] [CrossRef]
- Huang, W.Y.; Chen, J.H.; Jiang, Z.; Xiong, X.; Qiu, W.; Chen, J.; Ren, X.W.; Lu, L.W. Influence of Ca Content on Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn Alloys. Acta Metall. Sin. Engl. Lett. 2023, 36, 426–438. [Google Scholar] [CrossRef]
- Ma, X.Z.; Xiang, Z.L.; Tan, C.; Wang, Z.T.; Liu, Y.Y.; Chen, Z.Y.; Shu, Q. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy. J. Mater. Sci. Technol. 2021, 77, 1–18. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, P.; Sui, Y.D.; Jiang, Y.H.; Zhou, R.F. Influence of Zr content on microstructure and mechanical properties of As-cast Al-Zn-Mg-Cu alloy. J. Alloys Compd. 2021, 867, 158920. [Google Scholar] [CrossRef]
- Zhai, W.Y.; Sun, H.H.; Sun, L.; Zhao, Q.; Liu, Y.M.; Wang, Y.R.; Pu, B.W.; Zhang, B.Y.; Wang, S.Q. Influence of Cu content on mechanical and tribological properties of Al-7Si-Cu alloy. J. Mater. Res. Technol. 2023, 26, 4848–4859. [Google Scholar] [CrossRef]
- Mirzaei, S.; Alishahi, M.; Souek, P.; Zeníek, J.; Holec, D.; Koutná, N.; Buríkova, V.; Stupavská, M.; Zábransky, L.; Burmeister, F.; et al. The effect of chemical composition on the structure, chemistry and mechanical properties of magnetron sputtered W-B-C coatings: Modeling and experiments. Surf. Coat. Technol. 2020, 383, 125274. [Google Scholar] [CrossRef]
- Luo, X.; Feng, J.; Liu, Y.H.; Hu, M.Y.; Chong, X.Y.; Jiang, Y.H. Properties of Fe-Mn-Al alloys with different Mn contents using density functional theory. Rare Met. 2023, 42, 1387–1397. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, M.Y.; Lv, L.L.; Zhou, Y.; Li, Q.; Liu, N.; Yang, J.J. Influence of Si addition on the microstructure, mechanical and lead-bismuth eutectic corrosion properties of an amorphous AlCrFeMoTiSix high-entropy alloy coating. Intermetallics 2022, 148, 107649. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Zhou, Q.Y.; Liu, C.; Fan, T.W.; Wu, Y.Z.; Wang, Z.P.; Tang, P.Y. An initio study of thermodynamic and fracture properties of CrFeCoNiMn (0 ≤ x ≤ 3) high-entropy alloys. J. Mater. Res. Technol. 2022, 17, 498–506. [Google Scholar] [CrossRef]
- Xu, Y.L.; Wang, S.W.; Wang, Y.Y.; Chen, L.; Xiao, L.; Yang, L.; Hort, N. Mechanical behaviors of extruded Mg alloys with high Gd and Nd content. Prog. Nat. Sci. Mater. Int. 2021, 31, 591–598. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, C.; Wang, S.; Chen, R.R. Effect of Zr and Hf additions on microstructure and mechanical properties of Nb-Si based ultrahigh temperature alloys. J. Mater. Res. Technol. 2020, 9, 15585–15592. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, J.L.; Zhang, Q.; Wang, Z.; Han, J.C.; Lan, A.D.; Niu, X.F.; Bi, Z.N.; Qiao, J.W.; Gan, B. Excellent dynamic behavior of CoNiCr-based MP159 superalloys induced by nanotwins and stacking faults. Vacuum 2024, 222, 113022. [Google Scholar] [CrossRef]
- Neumeier, S.; Freund, L.P.; Bezold, A.; Koebrich, M.; Vollhueter, J.; Hausmann, D.; Solis, C.; Stark, A.; Schell, N.; Pyczak, F.; et al. Advanced polycrystalline γ′-strengthened CoNiCr-based superalloys. Metall. Mater. Trans. A 2024, 55, 1319–1337. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, T.; Zhou, Q.Y.; Wu, Y.Z.; Duan, S.Y.; Fan, T.W.; Wang, Z.P.; Tang, P.Y. High-throughput prediction of intrinsic properties of L12-(Nix1,Crx2,Cox3)3(Aly1,Tiy2) precipitates. Mater. Today Commun. 2022, 31, 103655. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Xiao, H.; Chen, G.; Wang, Z.P.; Hu, T.; Fan, T.W.; Ma, L. Theoretical study of mechanical properties of CrFeCoNiMox (0.1 ≤ x ≤ 0.3) alloys. RSC Adv. 2020, 10, 14080–14088. [Google Scholar] [CrossRef]
- Tian, F.; Varga, L.K.; Chen, N.; Delczeg, L.; Vitos, L. Ab initio investigation of high-entropy alloys of 3d elements. Phys. Rev. B 2013, 87, 075144. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, 1133–1138. [Google Scholar] [CrossRef]
- Vitos, L.; Kollar, J.; Skriver, H.L. Full charge-density calculation of the surface energy of metals. Phys. Rev. B 1994, 49, 16694–16701. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Gyorffy, B.L.; Pindor, A.J.; Staunton, J.; Stocks, G.M.; Winter, H. A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F Met. Phys. 1985, 15, 1337–1386. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.J.; Zhao, J.G.; Wang, Z.P.; Zhang, R.Z.; Wu, Y.Z.; Fan, T.W.; Tang, P.Y. Competitive mechanism of alloying elements on the physical properties of Al10Ti15Nix1Crx2Cox3 alloys through single-element and multi-element analysis methods. Coatings 2024, 14, 639. [Google Scholar] [CrossRef]
- Korzhavyi, P.A.; Ruban, A.V.; Abrikosov, I.A.; Skriver, H.L. Madelung energy for random metallic alloys in the coherent potential approximation. Phys. Rev. B 1995, 51, 5773–5780. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.J.; Zhao, J.G.; Wang, Z.P.; Fan, T.W.; Zhang, R.Z.; Wu, Y.Z.; Zhou, X.J.; Zhou, J.; Tang, P.Y. Theoretical study of the competition mechanism of alloying elements in L12-(Nix1Crx2Cox3)3Al precipitates. Coatings 2024, 14, 536. [Google Scholar] [CrossRef]
- Tian, F.; Delczeg, L.; Chen, N.; Varga, L.K.; Shen, J.; Vitos, L. Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 2013, 88, 085128. [Google Scholar] [CrossRef]
- Girifalco, L.A.; Weizer, V.G. Application of the morse potential function to cubic metals. Phys. Rev. 1959, 114, 687–690. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.L.; Lu, S.; Ding, X.D.; Wang, Y.Z.; Vitos, L. Phase selection rule for Al-doped CrMnFeCoNi high-entropy alloys from first-principles. Acta Mater. 2017, 140, 366–374. [Google Scholar] [CrossRef]
- Bastien, P.; Vinzi, V.E.; Tenenhaus, M. PLS generalised linear regression. Comput. Stat. Data Anal. 2005, 48, 17–46. [Google Scholar] [CrossRef]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Chong, I.G.; Jun, C.H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Wan, X.D.; Wang, Y.X.; Zhao, D.W. Multi-response optimization in small scale resistance spot welding of titanium alloy by principal component analysis and genetic algorithm. Int. J. Adv. Manuf. Technol. 2016, 83, 545–559. [Google Scholar] [CrossRef]
- Hardoon, D.R.; Szedmak, S.; Shawe-Taylor, J. Canonical correlation analysis: An overview with application to learning methods. Neural Comput. 2004, 16, 2639–2664. [Google Scholar] [CrossRef]
MC Element Ni | MC Element Cr | MC Element Co | ||||||
---|---|---|---|---|---|---|---|---|
CNi (at%) | CCr (at%) | CCo (at%) | CNi (at%) | CCr (at%) | CCo (at%) | CNi (at%) | CCr (at%) | CCo (at%) |
0 | 37.5 | 37.5 | 37.5 | 0 | 37.5 | 37.5 | 37.5 | 0 |
15 | 30 | 30 | 30 | 15 | 30 | 30 | 30 | 15 |
30 | 22.5 | 22.5 | 22.5 | 30 | 22.5 | 22.5 | 22.5 | 30 |
45 | 15 | 15 | 15 | 45 | 15 | 15 | 15 | 45 |
60 | 7.5 | 7.5 | 7.5 | 60 | 7.5 | 7.5 | 7.5 | 60 |
75 | 0 | 0 | 0 | 75 | 0 | 0 | 0 | 75 |
Independent Variables | Dependent Variable | Standardized Regression Coefficients | Projected Importance Indexes | Value (%) |
---|---|---|---|---|
−0.163 | 0.348 | 98.4 | ||
0.636 | 1.361 | |||
−0.474 | 1.013 |
Independent Variables | Dependent Variables | Standardized Regression Coefficients | Projected Importance Indexes | Values (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
−0.436 | −0.408 | −0.492 | 1.126 | 1.082 | 1.163 | 71.1 | 68.2 | 83.4 | ||||
−0.161 | 0.135 | 0.145 | 0.294 | 0.232 | 0.331 | |||||||
0.395 | 0.343 | 0.467 | 0.972 | 0.950 | 1.082 |
Independent Variables | Dependent Variables | Standardized Regression Coefficients | Projected Importance Indexes | Values (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | G | E | −0.458 | −0.404 | −0.415 | 1.289 | 1.101 | 1.128 | 76.2 | 71.7 | 72.3 | |
0.219 | 0.140 | 0.158 | 0.463 | 0.170 | 0.244 | |||||||
0.339 | 0.365 | 0.357 | 0.926 | 1.031 | 1.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, L.; He, W.; Liu, Y. RETRACTED: Study on the Alloying Elements Competition Mechanism of Nix1Crx2Cox3Al15Ti10 Alloys Based on High-Throughput Computation and Numerical Analysis. Coatings 2024, 14, 1138. https://doi.org/10.3390/coatings14091138
Liu Y, Wang L, He W, Liu Y. RETRACTED: Study on the Alloying Elements Competition Mechanism of Nix1Crx2Cox3Al15Ti10 Alloys Based on High-Throughput Computation and Numerical Analysis. Coatings. 2024; 14(9):1138. https://doi.org/10.3390/coatings14091138
Chicago/Turabian StyleLiu, Yu, Lijun Wang, Wenjie He, and Yunpeng Liu. 2024. "RETRACTED: Study on the Alloying Elements Competition Mechanism of Nix1Crx2Cox3Al15Ti10 Alloys Based on High-Throughput Computation and Numerical Analysis" Coatings 14, no. 9: 1138. https://doi.org/10.3390/coatings14091138
APA StyleLiu, Y., Wang, L., He, W., & Liu, Y. (2024). RETRACTED: Study on the Alloying Elements Competition Mechanism of Nix1Crx2Cox3Al15Ti10 Alloys Based on High-Throughput Computation and Numerical Analysis. Coatings, 14(9), 1138. https://doi.org/10.3390/coatings14091138