Investigation of Impact of C/Si Ratio on the Friction and Wear Behavior of Si/SiC Coatings Prepared on C/C-SiC Composites by Slurry Reaction Sintering and Chemical Vapor Infiltration
Abstract
1. Introduction
2. Material and Methods
2.1. Material Preparation
2.2. Characterization and Wear Test
3. Results and Discussion
3.1. Characterization of C/C-SiC Composites
3.2. Characterization of Si/SiC Coating
3.3. X-ray Diffraction Patterns of Si/SiC Coatings
3.4. Tribological Properties
3.4.1. Friction and Wear Behavior
3.4.2. Worn Surface of the Coatings
3.4.3. Worn Surface Analysis of the Counterparts
4. Conclusions
- The C/C-SiC composite material was mainly composed of the alternate stacking of a weft-free fabric and short fiber mesh with three phases of C, Si and SiC.
- With the increase in SiC content, the coating’s frictional coefficient increased and the wear rate decreased.
- When the carbon to silicon ratio in the slurry was 1:3, the Si/SiC coating had 93.0% SiC, which was the highest content of SiC, as well as the highest frictional coefficient of 0.95 and the lowest wear rate of 3.2 × 10−3 mg·N−1·m−1.
- The Si/SiC coating exhibited abrasion, adhesion and oxidation wear on N80 friction pairs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, P.; Li, P.; Xiao, P.; Li, Z.; Li, J.; Chen, P.; Liu, P.; Li, F. Oxidation Behaviour of C/C–SiC Brake Discs Tested on Full-Scale Bench Rig. Ceram. Int. 2021, 47, 34783–34793. [Google Scholar] [CrossRef]
- Hui, Y.; Liu, G.; Zhang, Q.; Zhang, Y.; Zang, Y.; Wang, S.; Shi, R. Fading Behavior and Wear Mechanisms of C/C–SiC Brake Disc during Cyclic Braking. Wear 2023, 526–527, 204930. [Google Scholar] [CrossRef]
- Chen, F.; Li, Z.; Luo, Y.; Li, D.; Ma, W.; Zhang, C.; Tang, H.; Li, F.; Xiao, P. Braking Behaviors of Cu-Based PM Brake Pads Mating with C/C–SiC and 30CrMnSi Steel Discs under High-Energy Braking. Wear 2021, 486–487, 204019. [Google Scholar] [CrossRef]
- Zhao, D.; Cui, H.; Liu, J.; Cheng, H.; Guo, Q.; Gao, P.; Li, R.; Li, Q.; Hou, W. A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance. Coatings 2022, 12, 768. [Google Scholar] [CrossRef]
- Yin, X.W.; Cheng, L.F.; Zhang, L.T.; Travitzky, N.; Greil, P. Fibre-Reinforced Multifunctional SiC Matrix Composite Materials. Int. Mater. Rev. 2017, 62, 117–172. [Google Scholar] [CrossRef]
- Ma, X.; Sun, H.; Kou, S.; Fan, S.; Deng, J.; Zhang, L.; Cheng, L. Flexural Strength and Wear Resistance of C/C–SiC Brake Materials Improved by Introducing SiC Ceramics into Carbon Fiber Bundles. Ceram. Int. 2021, 47, 24130–24138. [Google Scholar] [CrossRef]
- Belhocine, A.; Bouchetara, M. Structural and Thermal Analysis of Automotive Disc Brake Rotor. Arch. Mech. Eng. 2014, 61, 89–113. [Google Scholar] [CrossRef]
- Pinca-Bretotean, C.; Bhandari, R.; Sharma, C.; Dhakad, S.K.; Cosmin, P.; Sharma, A.K. An Investigation of Thermal Behaviour of Brake Disk Pad Assembly with Ansys. Mater. Today Proc. 2021, 47, 2322–2328. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, L.; Xu, Y.; Cheng, L.; Tian, G.; Ke, S.; Xu, F.; Liu, H. Microstructure and Tribological Properties of Advanced Carbon/Silicon Carbide Aircraft Brake Materials. Compos. Sci. Technol. 2008, 68, 3002–3009. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, D.; Xie, Q.; Luo, F.; Zhou, W. Friction and Wear Properties of C/C–SiC Braking Composites. Ceram. Int. 2012, 38, 2467–2473. [Google Scholar] [CrossRef]
- Zhu, H.; Lian, S.; Jin, M.; Wang, Y.; Yang, S.; Lu, Q.; Tao, Z.; Xiao, Q. Review of Research on the Influence of Vibration and Thermal Fatigue Crack of Brake Disc on Rail Vehicles. Eng. Fail. Anal. 2023, 153, 107603. [Google Scholar] [CrossRef]
- Diao, Q.; Zou, H.; Ren, X.; Wang, C.; Wang, Y.; Li, H.; Sui, T.; Lin, B.; Yan, S. A Focused Review on the Tribological Behavior of C/SiC Composites: Present Status and Future Prospects. J. Eur. Ceram. Soc. 2023, 43, 3875–3904. [Google Scholar] [CrossRef]
- An, Q.; Chen, J.; Ming, W.; Chen, M. Machining of SiC Ceramic Matrix Composites: A Review. Chin. J. Aeronaut. 2021, 34, 540–567. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhang, B.; Lu, Y.; Li, Y.; Xiao, P. Microstructure and Tribological Characteristics of Needled C/C–SiC Brake Composites Fabricated by Simultaneous Infiltration of Molten Si and Cu. Tribol. Int. 2016, 93, 220–228. [Google Scholar] [CrossRef]
- Grashchenko, A.S.; Kukushkin, S.A.; Osipov, A.V.; Redkov, A.V. Formation of Composite SiC-C Coatings on Graphite via Annealing Si-Melt in CO. Surf. Coat. Technol. 2021, 423, 127610. [Google Scholar] [CrossRef]
- Xue, R.; Wang, J.; Zeng, Y.; Zhang, N.; Zhang, Z.; Huang, S.; Xiao, Z.; Xia, H. Self-Lubrication Behavior of the Reaction-Formed Graphite/SiC Composites with Optimizing Graphite Content. Wear 2023, 526–527, 204946. [Google Scholar] [CrossRef]
- Zhang, N.; Ma, J.; Li, Z.; Zhan, X.; Zheng, Q.; Gao, J.; Liu, Y. Tribological Behavior of Squamous Textured SiC Sliding against Graphite under Mixed Lubrication. J. Manuf. Process. 2023, 108, 639–652. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Cheng, L.; Zhang, L.; Lou, J.; Zhang, J. Preparation and Friction Behavior of Carbon Fiber Reinforced Silicon Carbide Matrix Composites. Ceram. Int. 2007, 33, 439–445. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, L.; Cheng, L.; Zhang, J.; Yang, S.; Liu, H. Wear Mechanisms of the C/SiC Brake Materials. Tribol. Int. 2011, 44, 25–28. [Google Scholar] [CrossRef]
- Inoue, R.; Yang, J.M.; Kakisawa, H.; Kagawa, Y. Mode I Fracture Toughness of Short Carbon Fiber-Dispersed SiC Matrix Composite Fabricated by Melt Infiltration Process. Ceram. Int. 2013, 39, 8341–8346. [Google Scholar] [CrossRef]
- Yang, L.; Ran, L.; Yi, M. Carbon Fiber Knitted Fabric Reinforced Copper Composite for Sliding Contact Material. Mater. Des. 2011, 32, 2365–2369. [Google Scholar] [CrossRef]
- Fan, S.; Ma, X.; Ning, Y.; Luan, C.; He, L.; Deng, J.; Zhang, L.; Cheng, L. Tribological Performance of B4C Modified C/C-SiC Brake Materials under Dry Air and Wet Conditions. Ceram. Int. 2019, 45, 12870–12879. [Google Scholar] [CrossRef]
- Sun, H.; Fan, S.; Wang, L.; Ma, X.; Deng, J.; Cheng, L.; Zhang, L. Microstructure and Tribological Properties of PIP-SiC Modified C/C–SiC Brake Materials. Ceram. Int. 2021, 47, 15568–15579. [Google Scholar] [CrossRef]
- Fan, S.; Yang, C.; He, L.; Deng, J.; Zhang, L.; Cheng, L. The Effects of Phosphate Coating on Friction Performance of C/C and C/SiC Brake Materials. Tribol. Int. 2017, 114, 337–348. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Zeng, Q.; Fan, S.; Cheng, L. Simulated Three-Dimensional Transient Temperature Field during Aircraft Braking for C/SiC Composite Brake Disc. Mater. Des. 2011, 32, 2590–2595. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Liu, J.; Fan, S.; Cheng, L. Fabrication of Oxidation Protective Coatings on C/C–SiC Brake Materials at Room Temperature. Surf. Coat. Technol. 2012, 207, 467–471. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Li, K.; Shen, Q.; Chu, Y.; Fu, Q. Wear Behavior of SiC Nanowire-Reinforced SiC Coating for C/C Composites at Elevated Temperatures. J. Eur. Ceram. Soc. 2013, 33, 2961–2969. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, Y.; Zhang, J.; Zhu, X. MoSi2 Modified HfC Coating for the Ablation Protection of SiC-Coated C/C Composites: Ablation Resistance and Behavior. Corros. Sci. 2022, 205, 110418. [Google Scholar] [CrossRef]
- Feng, G.; Li, H.; Yao, X.; Sun, J.; Jia, Y. An Optimized Strategy toward Multilayer Ablation Coating for SiC-Coated Carbon/Carbon Composites Based on Experiment and Simulation. J. Eur. Ceram. Soc. 2022, 42, 3802–3811. [Google Scholar] [CrossRef]
- Hu, D.; Fu, Q.; Liu, T.; Tong, M. Structural Design and Ablation Performance of ZrB2/MoSi2 Laminated Coating for SiC Coated Carbon/Carbon Composites. J. Eur. Ceram. Soc. 2020, 40, 212–219. [Google Scholar] [CrossRef]
- Zhou, L.; Fu, Q.; Hu, D.; Zhang, J.; Wei, Y.; Zhu, J.; Song, J.; Tong, M. A Dense ZrB2-SiC-Si/SiC-Si Coating to Protect Carbon/Carbon Composites against Oxidation at 1773 K and 1973 K. Corros. Sci. 2021, 183, 109331. [Google Scholar] [CrossRef]
- Shi, Y.; Xiu, Y.; Wu, P.; Wang, C.; Xiao, Y.; Jemmali, R.; Cepli, D.; Tushtev, K. Notch Sensitivity of C/C-SiC Composite Evaluated by Flexural Tests. J. Eur. Ceram. Soc. 2023, 23, S0955221923010907. [Google Scholar] [CrossRef]
- Shi, Y.; Kessel, F.; Friess, M.; Jain, N.; Tushtev, K. Characterization and Modeling of Tensile Properties of Continuous Fiber Reinforced C/C-SiC Composite at High Temperatures. J. Eur. Ceram. Soc. 2021, 41, 3061–3071. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, D.; Song, Y.; Li, X.; Xiao, T.; Song, X. Inducing Low-Temperature Melting of TiNiCuNb Eutectic Alloy for Manufacturing Strong C/C-SiC Composite Joints. Mater. Charact. 2024, 207, 113562. [Google Scholar] [CrossRef]
- Xu, P.F.; Tan, Z.Y.; Ma, Y.; Zhang, D.H.; Fei, Q.G. The Performance Transition of C/SiC Composites Induced by Redistribution of Residual Stress. Carbon 2024, 219, 118782. [Google Scholar] [CrossRef]
Sample Type | Density (g/cm3) | Reference |
---|---|---|
C/C-SiC | 2.0 ± 0.2 | This work |
C/C | 1.4 ± 0.1 | This work |
C/C-SiC | 2.0 | [32] |
C/C-SiC | 2.0 | [33] |
C/C-SiC | 2 | [34] |
C/C-SiC | 1.848–1.921 | [10] |
C/C | 1.03–1.47 | [10] |
C/C | 1.5 | [35] |
Phase Content (wt.%) | SiC | Si | |
C to Si Ratio (wt.) | |||
1:1 | 87.1 | 12.9 | |
1:2 | 87.6 | 12.4 | |
1:3 | 93.0 | 7.0 | |
1:4 | 90.3 | 9.7 |
Type | Sub | Coating | |||
---|---|---|---|---|---|
1:1 | 1:2 | 1:3 | 1:4 | ||
Frictional coefficient | 0.63 ± 0.04 | 0.70 ± 0.03 | 0.73 ± 0.03 | 0.95 ± 0.02 | 0.84 ± 0.03 |
Content (wt.%) | C | O | Si | Cr | Ni |
---|---|---|---|---|---|
Point 1 | 18.52 | 7.97 | 5.95 | 14.20 | 53.35 |
Point 2 | 34.53 | 4.24 | 61.23 | - | - |
Content (wt.%) | C | O | Si | Cr | Ni |
---|---|---|---|---|---|
Point 1 | 28.57 | - | 71.43 | - | - |
Point 2 | 51.25 | 6.23 | 30.9 | 2.67 | 9.75 |
Content (wt.%) | Ni | Cr | Ti | Al | Si | C | O |
---|---|---|---|---|---|---|---|
Point 1 | 75.52 | 19.10 | 2.20 | - | 3.09 | 0.09 | - |
Point 2 | 3.50 | 1.32 | - | 1.17 | 77.58 | 11.91 | 4.51 |
Point 3 | 2.31 | 1.05 | - | - | 91.19 | 5.45 | - |
Point 4 | 77.94 | 16.39 | 1.41 | - | 4.13 | 0.13 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Cheng, K.; Chen, B.; Gao, P.; Guo, Q.; Cheng, H.; Naumov, A.; Li, Q.; Kang, W. Investigation of Impact of C/Si Ratio on the Friction and Wear Behavior of Si/SiC Coatings Prepared on C/C-SiC Composites by Slurry Reaction Sintering and Chemical Vapor Infiltration. Coatings 2024, 14, 108. https://doi.org/10.3390/coatings14010108
Zhao D, Cheng K, Chen B, Gao P, Guo Q, Cheng H, Naumov A, Li Q, Kang W. Investigation of Impact of C/Si Ratio on the Friction and Wear Behavior of Si/SiC Coatings Prepared on C/C-SiC Composites by Slurry Reaction Sintering and Chemical Vapor Infiltration. Coatings. 2024; 14(1):108. https://doi.org/10.3390/coatings14010108
Chicago/Turabian StyleZhao, Daming, Kaifeng Cheng, Baiyang Chen, Peihu Gao, Qiaoqin Guo, Hao Cheng, Anton Naumov, Qiao Li, and Wenjie Kang. 2024. "Investigation of Impact of C/Si Ratio on the Friction and Wear Behavior of Si/SiC Coatings Prepared on C/C-SiC Composites by Slurry Reaction Sintering and Chemical Vapor Infiltration" Coatings 14, no. 1: 108. https://doi.org/10.3390/coatings14010108
APA StyleZhao, D., Cheng, K., Chen, B., Gao, P., Guo, Q., Cheng, H., Naumov, A., Li, Q., & Kang, W. (2024). Investigation of Impact of C/Si Ratio on the Friction and Wear Behavior of Si/SiC Coatings Prepared on C/C-SiC Composites by Slurry Reaction Sintering and Chemical Vapor Infiltration. Coatings, 14(1), 108. https://doi.org/10.3390/coatings14010108