Thermal Instability of Gold Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giermann, L.; Thompson, C.V. Solid-state dewetting for ordered arrays of crystallographically oriented metal particles. Appl. Phys. Lett. 2005, 86, 121903. [Google Scholar] [CrossRef]
- Wang, D.; Shaaf, P. Thermal dewetting of thin Au films deposited onto line-patterned substrates. J. Mater. Sci. 2012, 47, 1605–1608. [Google Scholar] [CrossRef]
- Ruffino, F.; Grimaldi, M.G. Self-organized patterned arrays of Au and Ag nanoparticles by thickness-dependent dewetting of template-confined films. J. Mater. Sci. 2014, 49, 5714–5729. [Google Scholar] [CrossRef]
- Preston, A.S.; Hughes, R.A.; Demille, T.B.; Rey Davila, V.M.; Neretina, S. Dewetted nanostructures of gold, silver, copper and palladium with enhanced faceting. Acta Mater. 2019, 165, 15–25. [Google Scholar] [CrossRef]
- Toliopoulos, D.; Fedorov, A.; Bietti, S.; Bollani, M.; Bonera, E.; Ballabio, A.; Isella, G.; Bouabdellaoui, M.; Abbarchi, M.; Tsukamoto, S.; et al. Solid-State Dewetting Dynamics of Amorphous Ge Thin Films on Silicon Dioxide Substrates. Nanomaterials 2020, 10, 2542. [Google Scholar] [CrossRef] [PubMed]
- Wakayama, Y.; Tagami, T.; Tanaka, S.I. Three-dimensional islands of Si and Ge formed on SiO2 through crystallization and agglomeration from amorphous thin films. Thin Solid Films 1999, 350, 300. [Google Scholar] [CrossRef]
- Cheynis, F.; Leroy, F.; Müller, P. Dynamics and instability of solid-state dewetting. Comptes Rendus Phys. 2013, 14, 578. [Google Scholar] [CrossRef]
- Thompson, C.V. Solid-State Dewetting of Thin Films. Annu. Rev. Mater. Res. 2012, 42, 399–434. [Google Scholar] [CrossRef]
- Atiya, G.; Chatain, D.; Mikhelashvili, V.; Eisenstein, G.; Kaplan, W.D. The role of abnormal grain growth on solid-state dewetting kinetics. Acta Mater. 2014, 81, 304–314. [Google Scholar] [CrossRef]
- Temmyo, J. Semiconductor Nanostructures, Self-organization of. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 8335–8339. [Google Scholar]
- Danielson, D.T.; Sparacin, D.K.; Michel, J.; Kimerling, L.C. Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration. J. Appl. Phys. 2006, 100, 083507. [Google Scholar] [CrossRef]
- Srolovitz, D.J.; Goldiner, M.G. The Thermodynamics and Kinetics of film agglomeration. JOM 1995, 47, 31–36. [Google Scholar] [CrossRef]
- Łapiński, M.; Kozioł, R.; Cymann, A.; Sadowski, W.; Kościelska, B. Substrate Dependence in the Formation of Au Nanoislands for Plasmonic Platform Application. Plasmonics 2020, 15, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Kozioł, R.; Łapiński, M.; Syty, P.; Koszelow, D.; Sadowski, W.; Sienkiewicz, J.E.; Kościelska, B. Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions. Beilstein J. Nanotechnol. 2020, 11, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Kozioł, R.; Łapiński, M.; Syty, P.; Sadowski, W.; Sienkiewicz, J.E.; Nurek, B.; Maraloiu, V.A.; Kościelska, B. Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method. Appl. Surf. Sci. 2021, 567, 150802. [Google Scholar] [CrossRef]
- Addab, Y.; Kini, M.K.; Courtois, B.; Savan, A.; Ludwig, A.; Bozzolo, N.; Scheu, C.; Dehm, G.; Chatain, D. Microstructure evolution and thermal stability of equiatomic CoCrFeNi films on (0001) α-Al2O3. Acta Materi. 2020, 200, 908–921. [Google Scholar] [CrossRef]
- Kaplan, W.D.; Chatain, D.; Wynblatt, P.; Carter, W.C. A review of wetting versus adsorption, complexions, and related phenomena: The rosetta stone of wetting. J. Mater. Sci. 2013, 48, 5681–5717. [Google Scholar] [CrossRef] [Green Version]
- Amram, D.; Klinger, L.; Gazit, N.; Gluska, H.; Rabkin, E. Grain boundary grooving in thin films revisited: The role of interface diffusion. Acta Mater. 2014, 69, 386–396. [Google Scholar] [CrossRef]
- Shaffir, E.; Riess, I.; Kaplan, W.D. The mechanism of initial de-wetting and detachment of thin Au films on YSZ. Acta Mater. 2009, 57, 248–256. [Google Scholar] [CrossRef]
- Ewing, G.E. Thin Film Water. J. Phys. Chem. B 2004, 108, 15953–15961. [Google Scholar] [CrossRef]
- Dai, C.; Saidi, P.; Song, H.; Yao, Z.; Daymond, M.R.; Hoyt, J.J. A test of a phenomenological model of size dependent melting in Au nanoparticles. Acta Mater. 2017, 136, 11–20. [Google Scholar] [CrossRef]
- Chen, J.; Fan, X.; Liu, J.; Gu, C.; Shi, Y.; Singh, D.J.; Zheng, W. Heating-Rate and Particle-Size Effects on Melting Process of Au Nanoparticles. J. Phys. Chem. C 2020, 124, 7414–7420. [Google Scholar] [CrossRef]
- Gapska, A.; Łapiński, M.; Syty, P.; Sadowski, W.; Sienkiewicz, J.E.; Kościelska, B. Au–Si plasmonic platforms: Synthesis, structure and FDTD simulations. Beilstein J. Nanotechnol. 2018, 9, 2599–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.J.; Ahn, J.; Ko, J.; Jeong, Y.; Bok, M.; Hwang, S.H.; Kang, H.-J.; Jeon, S.; Choi, J.; Park, I.; et al. Shape-Controlled and Well-Arrayed Heterogeneous Nanostructures via Melting Point Modulation at the Nanoscale. ACS Appl. Mater. Inter. 2021, 13, 3358–3368. [Google Scholar] [CrossRef]
- Chu, M.Z.; Zhang, C.; Liang, X.H.; Hu, C.H.; Ma, G.T.; Fang, R.Y.; Tang, C. Melting and phase diagram of Au-Cu alloy at nanoscale. J. Alloys Compd. 2022, 891, 162029. [Google Scholar] [CrossRef]
- Chu, M.Z.; Qin, Y.Z.; Xiao, T.; Shen, W.; Su, T.; Hu, C.H.; Tang, C. Thermodynamic reassessment of the Ag–Cu phase diagram at nano-scale. Calphad 2021, 72, 102233. [Google Scholar] [CrossRef]
- Gladkikh, N.T.; Bogatyrenko, S.I.; Kryshtal, A.P.; Anton, R. Melting point lowering of thin metal films (Me = In, Sn, Bi, Pb) in Al/Me/Al film system. Appl. Surf. Sci. 2003, 219, 338–346. [Google Scholar] [CrossRef]
- Bahloul-Hourlier, D.; Perrot, P. Thermodynamics of the Au-Si-O System: Application to the Synthesis and Growth of Silicon-Silicon dioxide Nanowires. J. Phs. Eqil Diff. 2007, 28, 150–157. [Google Scholar] [CrossRef]
- Wójcik, N.A.; Barczyński, R.J. The Influence of Thin Gold Electrodes on the High-Temperature Impedance of Oxide Glasses. Coatings 2022, 12, 784. [Google Scholar] [CrossRef]
- Łapiński, M.; Kozioł, R.; Zawadzka, A.; Sadowski, W.; Kościelska, B. Thermal dewetting as a method of surface modification of the gold thin films for surface plasmon resonance based sensor applications. Mater. Today Commun. 2022, 32, 104066. [Google Scholar] [CrossRef]
- Łapiński, M.; Synak, A.; Gapska, A.; Bojarski, P.; Sadowski, W.; Kościelska, B. New plasmonic platform for enhanced luminescence of valrubicin. Opt. Mater. 2018, 83, 225–228. [Google Scholar] [CrossRef]
- Łapiński, M.; Kozioł, R.; Syty, P.; Patela, S.; Sienkiewicz, J.E.; Sadowski, W.; Kościelska, B. Tuning of the plasmon resonance location in Au nanostructures coated with a ultrathin film of Al2O3–Optical measurements and FDTD simulations. Surf. Sci. 2023, 733, 122289. [Google Scholar] [CrossRef]
- Łapiński, M.; Kozioł, R.; Skubida, W.; Winiarz, P.; Elhassan, R.M.Y.; Sadowski, W.; Kościelska, B. Transformation of bimetallic Ag–Cu thin films into plasmonically active composite nanostructures. Sci. Rep. 2023, 13, 10107. [Google Scholar] [CrossRef] [PubMed]
- Kopciuszyński, M.; Zdyb, R.; Jałochowski, M. Influence of Si(111) surface superstructure on quantum size effect in Au films. Appl. Surf. Sci. 2014, 304, 40–43. [Google Scholar] [CrossRef]
- Jaroch, T.; Zdyb, R. Temperature-Dependent Growth and Evolution of Silicene on Au Ultrathin Films—LEEM and LEED Studies. Materials 2022, 15, 1610. [Google Scholar] [CrossRef] [PubMed]
- Święch, W.; Bauer, E.; Mundschau, B. A low-energy electron microscopy study of the system Si(111)-Au. Surf. Sci. 1991, 253, 283–296. [Google Scholar] [CrossRef]
- Jaroch, T.; Krawiec, M.; Zdyb, R. Layered Heterostructure of Planar and Buckled Phases of Silicene. 2D Mater. 2021, 8, 035038. [Google Scholar] [CrossRef]
- Hijazi, H.; Leroy, F.; Monier, G.; Grégoire, G.; Gil, E.; Trassoudaine, A.; Dubrovskii, V.G.; Castelluci, D.; Isik Goktas, N.; LaPierre, R.R.; et al. Dynamics of Gold Droplet Formation on SiO2/Si(111) Surface. J. Phys. Chem. C 2020, 124, 11946. [Google Scholar] [CrossRef]
- Naidich, Y.V.; Zhuravlev, V.; Krasovskaya, N. The wettability of silicon carbide by Au–Si alloys. Mater. Sci. Eng. A 1998, 245, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Ressel, B.; Prince, K.C.; Heun, S.; Homma, Y. Wetting of Si surfaces by Au–Si liquid alloys. J. Appl. Phys. 2003, 93, 3886–3892. [Google Scholar] [CrossRef]
- Voigtländer, B.; Kawamura, M.; Paul, N.; Cherepanov, V. Formation of Si/Ge nanostructures at surfaces by self-organization. J. Phys. Condens. Matter. 2004, 16, S1535. [Google Scholar] [CrossRef]
- Kosolobov, S.S.; Aseev, A.L.; Latyshev, A.V. In Situ Study of Interaction of Oxygen with the Si(111) Surface by Ultrahigh-Vacuum Reflection Electron Microscopy. Semiconductors 2001, 35, 1038–1044. [Google Scholar] [CrossRef]
- Datta, D.P.; Siva, V.; Varma, S.; Kanjilal, D.; Sahoo, P.K. Ion induced dewetting of Au–Si on a SiO2 surface: Composite nanodot evolution and wettability transition. Phys. Chem. Chem. Phys. 2016, 18, 29955–29960. [Google Scholar] [CrossRef] [PubMed]
- Sahu, G.; Joseph, B.; Lenka, H.P.; Kuiri, P.K.; Pradhan, A.; Mahapatra, D.P. MeV Au irradiation induced nanoparticle formation and recrystallization in a low energy Au implanted Si layer. Nanotechnology 2007, 18, 495702. [Google Scholar] [CrossRef] [PubMed]
- Trempa, M.; Sturm, F.; Kranert, C.; Schanke, S.; Reimann, C.; Friedrich, J.; Schenk, C. Impact of different SiO2 diffusion barrier layers on lifetime distribution in multi-crystalline silicon ingots. J Cryst. Growth 2020, 532, 125378. [Google Scholar] [CrossRef]
- Pusztai, P.; Puskás, R.; Varga, E.; Erdőhelyi, A.; Kukovecz, Á.; Kónya, Z.; Kiss, J. Influence of gold additives on the stability and phase transformation of titanate nanostructures. Phys. Chem. Chem. Phys. 2014, 16, 26786–26797. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.; Liu, X.; Zhang, X.; Zhang, J.; Xiao, J.; Chen, X.; Xu, J. Annealing temperature dependence of mechanical and structural properties of chromium-gold films on the silica glass substrate. Thin Solid Films 2023, 774, 139849. [Google Scholar] [CrossRef]
- Kang, M.; Park, S.G.; Jeong, K.H. Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands. Sci. Rep. 2015, 5, 14790. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łapiński, M.; Dróżdż, P.; Gołębiowski, M.; Okoczuk, P.; Karczewski, J.; Sobanska, M.; Pietruczik, A.; Zytkiewicz, Z.R.; Zdyb, R.; Sadowski, W.; et al. Thermal Instability of Gold Thin Films. Coatings 2023, 13, 1306. https://doi.org/10.3390/coatings13081306
Łapiński M, Dróżdż P, Gołębiowski M, Okoczuk P, Karczewski J, Sobanska M, Pietruczik A, Zytkiewicz ZR, Zdyb R, Sadowski W, et al. Thermal Instability of Gold Thin Films. Coatings. 2023; 13(8):1306. https://doi.org/10.3390/coatings13081306
Chicago/Turabian StyleŁapiński, Marcin, Piotr Dróżdż, Mariusz Gołębiowski, Piotr Okoczuk, Jakub Karczewski, Marta Sobanska, Aleksiej Pietruczik, Zbigniew R. Zytkiewicz, Ryszard Zdyb, Wojciech Sadowski, and et al. 2023. "Thermal Instability of Gold Thin Films" Coatings 13, no. 8: 1306. https://doi.org/10.3390/coatings13081306
APA StyleŁapiński, M., Dróżdż, P., Gołębiowski, M., Okoczuk, P., Karczewski, J., Sobanska, M., Pietruczik, A., Zytkiewicz, Z. R., Zdyb, R., Sadowski, W., & Kościelska, B. (2023). Thermal Instability of Gold Thin Films. Coatings, 13(8), 1306. https://doi.org/10.3390/coatings13081306