Advanced Alloys and Coatings for Bioimplants
Funding
Conflicts of Interest
References
- Zhu, G.; Wang, G.; Li, J.J. Advances in Implant Surface Modifications to Improve Osseointegration. Mater. Adv. 2021, 2, 6901–6927. [Google Scholar] [CrossRef]
- Sumayli, A. Recent Trends on Bioimplant Materials: A Review. Mater. Today Proc. 2021, 46, 2726–2731. [Google Scholar] [CrossRef]
- Zafar, M.S.; Najeeb, S.; Khurshid, Z. Introduction to Dental Implants Materials, Coatings, and Surface Modifications. In Dental Implants: Materials, Coatings, Surface Modifications and Interfaces with Oral Tissues; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–4. ISBN 9780128195864. [Google Scholar]
- Najeeb, S.; Mali, M.; Syed, A.U.Y.; Zafar, M.S.; Khurshid, Z.; Alwadaani, A.; Matinlinna, J.P. Dental Implants Materials and Surface Treatments. In Advanced Dental Biomaterials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 581–598. ISBN 9780081024768. [Google Scholar]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Zohaib, S.; Hasan, S.M.; Khan, R.S. Bisphosphonate Releasing Dental Implant Surface Coatings and Osseointegration: A Systematic Review. J. Taibah Univ. Med. Sci. 2017, 12, 369–375. [Google Scholar] [CrossRef]
- Raghavan, R.; RavindranP, A.; Purushothaman, P. Surface Treatments of Implant: A Review. Int. J. Sci. Healthc. Res. 2020, 5, 128. [Google Scholar]
- Oliva, J.; Oliva, X.; Oliva, J.D. Five-Year Success Rate of 831 Consecutively Placed Zirconia Dental Implants in Humans: A Comparison of Three Different Rough Surfaces. Int. J. Oral Maxillofac. Implant. 2010, 25, 336–344. [Google Scholar]
- Giner, L.; Mercadé, M.; Torrent, S.; Punset, M.; Pérez, R.A.; Delgado, L.M.; Gil, F.J. Double Acid Etching Treatment of Dental Implants for Enhanced Biological Properties. J. Appl. Biomater. Funct. Mater. 2018, 16, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.G.; Li, H.T.; Li, P.R.; Chen, Y.C. Preparation of Hydroxyapatite Coatings by Acid Etching-Electro Deposition on Pure Titanium. In Proceedings of the 2012 International Conference on Biomedical Engineering and Biotechnology, iCBEB 2012, Macau, China, 28–30 May 2012; pp. 433–436. [Google Scholar]
- Hryniewicz, T. Electropolishing Processes for Better Implants’ Performance. Biomed. J. Sci. Tech. Res. 2018, 11, 001–004. [Google Scholar] [CrossRef]
- Khandaker, M.; Riahinezhad, S.; Sultana, F.; Morris, T.; Knight, J.; Vaughan, M. Peen Treatment on a Titanium Implant: Effect of Roughness, Osteoblast Cell Functions, and Bonding with Bone Cement. Int. J. Nanomed. 2016, 11, 585. [Google Scholar] [CrossRef] [Green Version]
- Scott Corpe, R.; Steflik, D.E.; Whitehead, R.Y.; Wilson, M.D.; Young, T.R.; Jaramillo, C. Correlative Experimental Animal and Human Clinical Retrieval Evaluations of Hydroxyapatite (HA)-Coated and Non-Coated Implants in Orthopaedics and Dentistry. Crit. Rev. Biomed. Eng. 2000, 28, 395–398. [Google Scholar] [CrossRef]
- Stendig-Lindberg, G.; Tepper, R.; Leichter, I. Trabecular Bone Density in a Two Year Controlled Trial of Peroral Magnesium in Osteoporosis. Magnes. Res. 1993, 6, 155–163. [Google Scholar]
- Schünemann, F.H.; Galárraga-Vinueza, M.E.; Magini, R.; Fredel, M.; Silva, F.; Souza, J.C.M.; Zhang, Y.; Henriques, B. Zirconia Surface Modifications for Implant Dentistry. Mater. Sci. Eng. C 2019, 98, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
- D’Almeida, M.; Attik, N.; Amalric, J.; Brunon, C.; Renaud, F.; Abouelleil, H.; Toury, B.; Grosgogeat, B. Chitosan Coating as an Antibacterial Surface for Biomedical Applications. PLoS ONE 2017, 12, e0189537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rammelt, S.; Schulze, E.; Bernhardt, R.; Hanisch, U.; Scharnweber, D.; Worch, H.; Zwipp, H.; Biewener, A. Coating of Titanium Implants with Type-I Collagen. J. Orthop. Res. 2004, 22, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Ewald, A.; Glückermann, S.K.; Thull, R.; Gbureck, U. Antimicrobial Titanium/Silver PVD Coatings on Titanium. Biomed. Eng. Online 2006, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohara, S.; Suthakorn, J. Surface Coating of Orthopedic Implant to Enhance the Osseointegration and Reduction of Bacterial Colonization: A Review. Biomater. Res. 2022, 26, 26. [Google Scholar] [CrossRef]
- Geyao, L.; Yang, D.; Wanglin, C.; Chengyong, W. Development and Application of Physical Vapor Deposited Coatings for Medical Devices: A Review. Procedia CIRP 2020, 89, 250–262. [Google Scholar] [CrossRef]
- Durdu, S.; Aktug, S.L.; Korkmaz, K.; Yalcin, E.; Aktas, S. Fabrication, Characterization and in Vitro Properties of Silver-Incorporated TiO2 Coatings on Titanium by Thermal Evaporation and Micro-Arc Oxidation. Surf. Coat. Technol. 2018, 352, 600–608. [Google Scholar] [CrossRef]
- Akhtar, M.; Uzair, S.A.; Rizwan, M.; Ur Rehman, M.A. The Improvement in Surface Properties of Metallic Implant via Magnetron Sputtering: Recent Progress and Remaining Challenges. Front. Mater. 2022, 8, 602. [Google Scholar] [CrossRef]
- Goto, T.; Katsui, H. Chemical Vapor Deposition of Ca-p-o Film Coating. In Interface Oral Health Science 2014: Innovative Research on Biosis-Abiosis Intelligent Interface; Springer: Tokyo, Japan, 2015; pp. 103–115. ISBN 9784431551928. [Google Scholar]
- Talib, R.; Toff, M.R. Plasma-Sprayed Coating of Hydroxyapatite on Metal Implants—A Review. Med. J. Malays. 2004, 59, 153–154. [Google Scholar]
- Hussain, M.; Askari Rizvi, S.H.; Abbas, N.; Sajjad, U.; Shad, M.R.; Badshah, M.A.; Malik, A.I. Recent Developments in Coatings for Orthopedic Metallic Implants. Coatings 2021, 11, 791. [Google Scholar] [CrossRef]
- Safavi, M.S.; Walsh, F.C.; Surmeneva, M.A.; Surmenev, R.A.; Khalil-Allafi, J. Electrodeposited Hydroxyapatite-Based Biocoatings: Recent Progress and Future Challenges. Coatings 2021, 11, 110. [Google Scholar] [CrossRef]
- Osman, R.B.; Swain, M.V. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Materials 2015, 8, 932–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Liu, W.; Ngai, T. Polymer Coatings on Magnesium-based Implants for Orthopedic Applications. J. Polym. Sci. 2022, 60, 32–51. [Google Scholar] [CrossRef]
- Jenkins, M. Biomedical Polymers; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9781845693640. [Google Scholar]
- Shanmugapriya; Sivamaran, V.; Padma Rao, A.; Senthil Kumar, P.; Selvamani, S.T.; Mandal, T.K. Sol–Gel Derived Al2O3/Gr/HAP Nanocomposite Coatings on Ti–6Al–4V Alloy for Enhancing Tribo-Mech Properties and Antibacterial Activity for Bone Implants. Appl. Phys. A 2022, 128, 635. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vishwakarma, V.; Kaliaraj, G.S.; Kirubaharan, A.M.K. Advanced Alloys and Coatings for Bioimplants. Coatings 2022, 12, 1525. https://doi.org/10.3390/coatings12101525
Vishwakarma V, Kaliaraj GS, Kirubaharan AMK. Advanced Alloys and Coatings for Bioimplants. Coatings. 2022; 12(10):1525. https://doi.org/10.3390/coatings12101525
Chicago/Turabian StyleVishwakarma, Vinita, Gobi Saravanan Kaliaraj, and A. M. Kamalan Kirubaharan. 2022. "Advanced Alloys and Coatings for Bioimplants" Coatings 12, no. 10: 1525. https://doi.org/10.3390/coatings12101525
APA StyleVishwakarma, V., Kaliaraj, G. S., & Kirubaharan, A. M. K. (2022). Advanced Alloys and Coatings for Bioimplants. Coatings, 12(10), 1525. https://doi.org/10.3390/coatings12101525