Influence of Surface Post-Processing on Crystal Refinement and Characteristics of Hopeite Coating by Phosphating
Abstract
1. Introduction
2. Materials and Methods
3. Results and discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Z.; Zhang, D.; Li, X.; Jiang, S.; Zhang, Q. Current status, opportunities and challenges in chemical conversion coatings for zinc. Colloids Surf. A Physicochem. Eng. Asp. 2018, 546, 221–236. [Google Scholar] [CrossRef]
- Pommiers, S.; Frayret, J.; Castetbon, A.; Potin-Gautier, M. Alternative conversion coatings to chromate for the protection of magnesium alloys. Corros. Sci. 2014, 84, 135–146. [Google Scholar] [CrossRef]
- Chen, X.B.; Birbilis, N.; Abbott, T.B. Review of corrosion-resistant conversion coatings for magnesium and its alloys. Corrosion 2011, 67, 1–16. [Google Scholar] [CrossRef]
- Jiang, C.; Cheng, X. Anti-corrosion zinc phosphate coating on building steel via a facile one-step brushing method. Electrochem. Commun. 2019, 109, 106596. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, X.; Xiao, G.; Lu, Y. Phosphate chemical conversion coatings on metallic substrates for biomedical application: A review. Mater. Sci. Eng. C 2015, 47, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.-W.; Liu, C.; Zuo, K.-Q.; Su, P.; Li, L.-B.; Xiao, G.-Y.; Cheng, L. Strontium-zinc phosphate chemical conversion coating improves the osseointegration of titanium implants by regulating macrophage polarization. Chem. Eng. J. 2021, 408, 127362. [Google Scholar] [CrossRef]
- Miskovic, D.M.; Pohl, K.; Birbilis, N.; Laws, K.J.; Ferry, M. Formation of a phosphate conversion coating on bioresorbable Mg-based metallic glasses and its effect on corrosion performance. Corros. Sci. 2017, 129, 214–225. [Google Scholar] [CrossRef]
- Bosco, R.; van den Beucken, J.; Leeuwenburgh, S.; Jansen, J. Surface engineering for bone implants: A trend from passive to active surfaces. Coatings 2012, 2, 95–119. [Google Scholar] [CrossRef]
- Ramaswamy, Y.; Roohani, I.; No, Y.J.; Madafiglio, G.; Chang, F.; Zhao, F.; Lu, Z.; Zreiqat, H. Nature-inspired topographies on hydroxyapatite surfaces regulate stem cells behaviour. Bioact. Mater. 2021, 6, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, G.; Zhao, X.; He, K.; Xu, W.; Lu, Y. Rapid early formation and crystal refinement of chemical conversion hopeite coatings induced by substrate sandblasting. New J. Chem. 2015, 39, 7942–7947. [Google Scholar] [CrossRef]
- da Rocha, D.N.; Cruz, L.R.d.O.; de Campos, J.B.; Marçal, R.L.S.B.; Mijares, D.Q.; Coelho, P.G.; da Silva, M.H.P. Mg substituted apatite coating from alkali conversion of acidic calcium phosphate. Mater. Sci. Eng. C Part 1 2017, 70, 408–417. [Google Scholar] [CrossRef]
- Chunyan, Z.; Shangju, L.; Baoxing, Y.; Xiaopeng, L.; Xiao-Bo, C.; Tao, Z.; Fuhui, W. Ratio of total acidity to pH value of coating bath: A new strategy towards phosphate conversion coatings with optimized corrosion resistance for magnesium alloys. Corros. Sci. 2019, 150, 279–295. [Google Scholar] [CrossRef]
- Huynh, V.; Ngo, N.K.; Golden, T.D. Surface activation and pretreatments for biocompatible metals and alloys used in biomedical applications. Int. J. Biomater. 2019, 2019, 21. [Google Scholar] [CrossRef] [PubMed]
- Ramezanzadeh, B.; Akbarian, M.; Ramezanzadeh, M.; Mahdavian, M.; Alibakhshi, E.; Kardar, P. Corrosion protection of steel with zinc phosphate conversion coating and post-treatment by hybrid organic-inorganic sol-gel based silane film. J. Electrochem. Soc. 2017, 164, C224–C230. [Google Scholar] [CrossRef]
- Narayanan, T. Surface pretreatment by phosphate conversion coatings—A review. Rev. Adv. Mater. Sci. 2005, 9, 130–177. [Google Scholar]
- Liu, B.; Xiao, G.; Chen, C.; Lu, Y.; Geng, X. Hopeite and scholzite coatings formation on titanium via wet-chemical conversion with controlled temperature. Surf. Coat. Technol. 2020, 384, 125330. [Google Scholar] [CrossRef]
- Zhao, X.; Xiao, G.; Zhang, X.; Wang, H.; Lu, Y. Ultrasonic induced rapid formation and crystal refinement of chemical conversed hopeite coating on titanium. J. Phys. Chem. C 2014, 118, 1910–1918. [Google Scholar] [CrossRef]
- Liu, B.; Xiao, G.; Jiang, C.; Zheng, Y.; Wang, L.; Lu, Y. Formation initiation and structural changes of phosphate conversion coating on titanium induced by galvanic coupling and Fe2+ ions. Rsc. Adv. 2016, 6, 75365–75375. [Google Scholar] [CrossRef]
- Ghali, E.I.; Potvin, R. The mechanism of phosphating of steel. Corros. Sci. 1972, 12, 583–594. [Google Scholar] [CrossRef]
- Donofrio, J. Zinc phosphating. Met. Finish. 2000, 98, 57–73. [Google Scholar] [CrossRef]
- Narayanan, T.S.N.S.; Subbaiyan, M. Kinetics and mechanism of phosphating through potential-time measurements: Effect of surface active amines and dithiocarbamates. Surf. Coat. Int. 1992, 75, 184–191. [Google Scholar]
- Suchanek, K.; Bartkowiak, A.; Perzanowski, M.; Marszałek, M.; Sowa, M.; Simka, W. Electrochemical properties and bioactivity of hydroxyapatite coatings prepared by MEA/EDTA double-regulated hydrothermal synthesis. Electrochim. Acta 2019, 298, 685–693. [Google Scholar] [CrossRef]
- Chitsaz-Khoyi, L.; Khalil-Allafi, J.; Motallebzadeh, A.; Etminanfar, M. The effect of hydroxyapatite nanoparticles on electrochemical and mechanical performance of TiC/N coating fabricated by plasma electrolytic saturation method. Surf. Coat. Technol. 2020, 394, 125817. [Google Scholar] [CrossRef]





| Coatings | Ecorr (VSCE) | Icorr (μA·cm−2) | Rs (Ω·cm2) | Rpo (Ω·cm2) | Rct (Ω·cm2) |
|---|---|---|---|---|---|
| R-D | −0.16 ± 0.06 | 0.12 ± 0.08 | 4.09 ± 2.99 | 1.50 × 105 ± 2.50 | 1.01 × 104 ± 2.67 |
| D-R | −0.30 ± 0.04 | 0.09 ± 0.03 | 2.00 ± 1.89 | 3.17 × 105 ± 5.35 | 1.08 × 104 ± 3.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zheng, Y.; Xiao, G.; Chen, C.; Lu, Y. Influence of Surface Post-Processing on Crystal Refinement and Characteristics of Hopeite Coating by Phosphating. Coatings 2021, 11, 541. https://doi.org/10.3390/coatings11050541
Liu B, Zheng Y, Xiao G, Chen C, Lu Y. Influence of Surface Post-Processing on Crystal Refinement and Characteristics of Hopeite Coating by Phosphating. Coatings. 2021; 11(5):541. https://doi.org/10.3390/coatings11050541
Chicago/Turabian StyleLiu, Bing, Yongzhen Zheng, Guiyong Xiao, Chuanzhong Chen, and Yupeng Lu. 2021. "Influence of Surface Post-Processing on Crystal Refinement and Characteristics of Hopeite Coating by Phosphating" Coatings 11, no. 5: 541. https://doi.org/10.3390/coatings11050541
APA StyleLiu, B., Zheng, Y., Xiao, G., Chen, C., & Lu, Y. (2021). Influence of Surface Post-Processing on Crystal Refinement and Characteristics of Hopeite Coating by Phosphating. Coatings, 11(5), 541. https://doi.org/10.3390/coatings11050541

