Synthesis and Characterization of Cellulose Acetate Membranes with Self-Indicating Properties by Changing the Membrane Surface Color for Separation of Gd(III)
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costa, A.F.; Van Der Pol, C.B.; Maralani, P.J.; McInnes, M.D.; Shewchuk, J.R.; Verma, R.; Hurrell, C.; Schieda, N. Gadolinium deposition in the brain: A systematic review of existing guidelines and policy statement issued by the canadian association of radiologists. Can. Assoc. Radiol. J. 2018, 69, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Abujudeh, H.H.; Kosaraju, V.K.; Kaewlai, R. Acute adverse reactions to gadopentetate dimeglumine and gadobenate dimeglumine: Experience with 32,659 injections. Am. J. Roentgenol. 2010, 194, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Dalle, H.M.; de Mattos, J.R.L.; Dias, M.S. Enriched gadolinium burnable poison for PWR fuel – Monte carlo burnup simulations of reactivity, chapter-4. In Current Research in Nuclear Reactor Technology in Brazil and Worldwide; Intech Publishers: Rijeka, Croatia, 2013; pp. 73–89. [Google Scholar]
- Kanda, T.; Fukusato, T.; Matsuda, M.; Toyoda, K.; Oba, H.; Kotoku, J.; Haruyama, T.; Kitajima, K.; Furui, S. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: Evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiolgy 2015, 276, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Murata, N.; Gonzalez-Cuyar, L.F.; Murata, K. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gado- linium in brain and bone tissue: Preliminary results from 9 patients with normal renal function. Investig. Radiol. 2016, 51, 447–453. [Google Scholar] [CrossRef]
- Elsofany, E. Removal of lanthanum and gadolinium from nitrate medium using Aliquat-336 impregnated onto Amberlite XAD-4. J. Hazard. Mater. 2008, 153, 948–954. [Google Scholar] [CrossRef]
- Rufus, A.; Kumar, P.S.; Jeena, K.; Velmurugan, S. Removal of gadolinium, a neutron poison from the moderator system of nuclear reactors. J. Hazard. Mater. 2018, 342, 77–84. [Google Scholar] [CrossRef]
- Tadjarodi, A.; Jalalat, V.; Zare-Dorabei, R. Adsorption of La(III) in aqueous systems by N-(2-hydroxyethyl) salicylaldimine-functionalized mesoporous silica. Mater. Res. Bull. 2015, 61, 113–119. [Google Scholar] [CrossRef]
- Zare-Dorabei, R.; Jalalat, V.; Tadjarodi, A. Central composite design optimization of Ce(iii) ion removal from aqueous solution using modified SBA-15 mesoporous silica. New J. Chem. 2016, 40, 5128–5134. [Google Scholar] [CrossRef]
- Dashtian, K.; Zare-Dorabei, R. Synthesis and characterization of functionalized mesoprous SBA-15 decorated with Fe3O4 nanoparticles for removal of Ce(III) ions from aqueous solution: ICP–OES detection and central composite design optimization. J. Colloid Interface Sci. 2017, 494, 114–123. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced functional polymeric membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef]
- Thakur, V.; Voicu, S.I. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr. Polym. 2016, 146, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Anitha, A.; Sowmya, S.; Jayakumar, R.; Deepthi, S.; Chennazhi, K.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R. Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci. 2014, 39, 1644–1667. [Google Scholar] [CrossRef]
- Corobea, M.; Muhulet, O.; Miculescu, F.; Antoniac, I.V.; Vuluga, Z.; Florea, D.; Vuluga, D.M.; Butnaru, M.; Ivanov, D.; Voicu, S.I.; et al. Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym. Adv. Technol. 2016, 27, 1586–1595. [Google Scholar] [CrossRef]
- Corobea, C.; Donescu, D.; Rădiţoiu, S.; Voicu, S.I.; Nechifor, G. Membrane materials IV. Functionalised hybrid polimer nanoparticles for copper ions separation on colloidal ultrafiltration. Revista de Chimie. 2006, 57, 981–987. [Google Scholar]
- Thakur, V.; Thakur, M.K. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 2014, 109, 102–117. [Google Scholar] [CrossRef]
- Thakur, V.; Thakur, M.K.; Gupta, R.K. Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr. Polym. 2013, 98, 820–828. [Google Scholar] [CrossRef]
- Voicu, S.I.; Dobrica, A.; Sava, S.; Ivan, A.; Naftanaila, L. Cationic surfactants-controlled geometry and dimensions of polymeric membrane pores. J. Optoelectron. Adv. Mater. 2012, 14, 923–928. [Google Scholar]
- Voicu, S.I.; Ninciuleanu, C.M.; Muhulet, O.; Miculescu, M. Cellulose acetate membranes with controlled porosity and their use for the separation of aminoacids and proteins. J. Optoelectron. Adv. Mater. 2014, 16, 903–908. [Google Scholar]
- Rusen, E.; Mocanu, A.; Nistor, L.C.; Dinescu, A.; Călinescu, I.; Mustăţea, G.; Voicu, Ş.I.; Andronescu, C.; Diacon, A. New design of antimicrobial membranes based on polymers colloids/MWCNT hybrid materials and silver nanoparticles. ACS. Appl. Mater. Interfaces 2014, 6, 17384–17393. [Google Scholar] [CrossRef]
- Miculescu, M.; Muhulet, A.; Nedelcu, A.; Voicu, S.I. Synthesis and characterization of polysulfone - carbon nanotubes - polyethylene imine composite membranes. Optoelectron. Adv. Mater. 2014, 8, 1072–1076. [Google Scholar]
- Dumitriu, C.; Voicu, S.I.; Muhulet, A.; Nechifor, G.; Popescu, S.; Ungureanu, C.; Carja, A.; Miculescu, F.; Trusca, R.; Pirvu, C. Cellulose acetate - titanium dioxide nanotubes membrane fraxiparinized through polydopamine. Carbohydr. Polym. 2018, 181, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Miculescu, F.; Maidaniuc, A.; Voicu, S.I.; Thakur, V.; Stan, G.; Ciocan, L.T. Progress in hydroxyapatite–starch based sustainable biomaterials for biomedical bone substitution applications. ACS Sustain. Chem. Eng. 2017, 5, 8491–8512. [Google Scholar] [CrossRef]
- Miculescu, F.; Mocanu, A.C.; Stan, G.; Miculescu, M.; Maidaniuc, A.; Cimpean, A.; Mitran, V.; Voicu, S.I.; Machedon-Pisu, T.; Ciocan, L.T. Influence of the modulated two-step synthesis of biogenic hydroxyapatite on biomimetic products’ surface. Appl. Surf. Sci. 2018, 438, 147–157. [Google Scholar] [CrossRef]
- Maidaniuc, A.; Miculescu, F.; Andronescu, C.; Miculescu, M.; Matei, E.; Pencea, I.; Csaki, I.; Machedon-Pisu, T.; Ciocan, L.T.; Voicu, S.I.; et al. Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles. Appl. Surf. Sci. 2018, 438, 158–166. [Google Scholar] [CrossRef]
- Muhulet, A.; Miculescu, F.; Voicu, S.I.; Schütt, F.; Thakur, V.; Mishra, Y.K. Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater. Today Energy 2018, 9, 154–186. [Google Scholar] [CrossRef]
- Bresciani, R.; Marzorati, S.; Lascialfari, A.; Sacchi, B.; Santo, N.; Longhi, M. Effects of catalyst aging on the growth morphology and oxygen reduction activity of nitrogen-doped carbon nanotubes. Electrochem. Commun. 2015, 51, 27–32. [Google Scholar] [CrossRef]
- Yu, L.-H.; Wang, R.; Xu, L. Preparation of acylamino copper Phthalocyanine modified multiwalled carbon nanotubes thin films with oxygen plasma treatment. Mater. Lett. 2016, 164, 282–285. [Google Scholar] [CrossRef]
- Ionită, M.; Crica, L.E.; Voicu, S.I.; Dinescu, S.; Miculescu, F.; Costache, M.; Iovu, H. Synergistic effect of carbon nanotubes and graphene for high performance cellulose acetate membranes in biomedical applications. Carbohydr. Polym. 2018, 183, 50–61. [Google Scholar] [CrossRef]
- Raicopol, M.D.; Andronescu, C.; Voicu, S.I.; Vasile, E.; Pandele, A.M. Cellulose acetate/layered double hydroxide adsorptive membranes for efficient removal of pharmaceutical environmental contaminants. Carbohydr. Polym. 2019, 214, 204–212. [Google Scholar] [CrossRef]
- Shin, Y.; Taufique, M.F.N.; Devanathan, R.; Cutsforth, E.C.; Lee, J.; Liu, W.; Fifield, L.S.; Gotthold, D. Highly selective supported graphene oxide membranes for water-ethanol separation. Sci. Rep. 2019, 9, 2251. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Ng, L.Y.; Ang, W.L.; Chung, Y.T.; Rohani, R.; Mohammad, A.W. Enhancing morphology and separation performance of polyamide 6,6 membranes by minimal incorporation of silver decorated graphene oxide nanoparticles. Sci. Rep. 2019, 9, 1216. [Google Scholar] [CrossRef] [PubMed]
- Mal, D.; Puspalata, R.; Rangarajan, S.; Velmurugan, S. Effect of gadolinium nitrate concentration on molecular product yield during gamma irradiation and on corrosion of stainless steel. Radiat. Phys. Chem. 2017, 138, 1–8. [Google Scholar] [CrossRef]
- Tonoike, K.; Miyoshi, Y.; Uchiyama, G. Benchmark critical experiments of a heterogeneous system of uranium fuel rods and uranium solution poisoned with gadolinium, and application of their results to JACS validation. J. Nucl. Sci. Technol. 2011, 48, 1118–1128. [Google Scholar] [CrossRef]
- Smolen, G.R.; Lloyd, R.C.; Matsumoto, T. Criticality data and validation studies of mixed-oxide fuel pin arrays in Pu+U+Gd nitrate. Nucl. Technol. 1994, 107, 340–355. [Google Scholar] [CrossRef]
- Bierman, S.R. Reactivity measurements under conditions typical to fuel element dissolution. Nucl. Technol. 1976, 31, 339–347. [Google Scholar] [CrossRef]
- Soury, R.; Jabli, M.; Saleh, T.A.; Kechich, A.; Loiseau, F.; Saint-Aman, E.; Nasri, H. Degradation of calmagite by dichloride (5,10,15,20 tetraphenylporphyrinato) antimony hexachloridoantimonate: [Sb(TPP)Cl2]SbCl6. Inorg. Chem. Commun. 2019, 104, 54–60. [Google Scholar] [CrossRef]
- Pandele, A.M.; Neacsu, P.; Cimpean, A.; Staras, A.; Miculescu, M.; Iordache, A.; Voicu, S.; Thakur, V.; Toader, O. Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration. Appl. Surf. Sci. 2018, 438, 2–13. [Google Scholar] [CrossRef]
- Pandele, A.M.; Comanici, F.; Carp, C.; Miculescu, M.; Voicu, S.; Thakur, V.; Serban, B. Synthesis and characterization of cellulose acetate-hydroxyapatite micro and nano composites membranes for water purification and biomedical applications. Vacuum 2017, 146, 599–605. [Google Scholar] [CrossRef]
- Voicu, S.I.; Condruz, R.M.; Mitran, V.; Cimpean, A.; Miculescu, F.; Andronescu, C.; Miculescu, M.; Thakur, V.K. Sericin covalent immobilization onto cellulose acetate membranes. ACS Sustain. Chem. Eng. 2016, 4, 1765–1774. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Prog. Mater. Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Compromising science by ignorant instrument calibration-need to revisit half a century of published XPS data. Angew. Chem. Int. Ed. 2020, 59, 5002–5006. [Google Scholar] [CrossRef] [PubMed]
- ISO. 15472:2010 Surface Chemical Analysis—X-ray Photoelectron Spectrometers—Calibration of Energy Scales; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- Corobea, M.S.; Albu, M.G.; Ion, R.; Cimpean, A.; Miculescu, F.; Antoniac, I.V.; Raditoiu, V.; Sirbu, I.; Stoenescu, M.; Voicu, S.I.; et al. Advanced modification of titanium surface with collagen and doxycycline, a new approach in dental implants. J. Adh. Sci. Technol. 2015, 29, 2537–2550. [Google Scholar] [CrossRef]
- Ionită, M.; Pandele, A.M.; Crica, L.E.; Voicu, S.I.; Iovu, H. Fabrication of cellulose triacetate/graphene oxide porous membrane. Polym. Adv. Technol. 2015, 27, 350–357. [Google Scholar] [CrossRef]
- Hu, B.-B.; Wang, J.-L.; Wang, Y.-T.; Zhu, M.-J. Specify the individual and synergistic effects of lignocellulose-derived inhibitors on biohydrogen production and inhibitory mechanism research. Renew. Energy 2019, 140, 397–406. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Y.; Ma, M.; Rao, K.; Wang, Z. Simultaneous passive sampling of hydrophilic and hydrophobic emerging organic contaminants in water. Ecotoxicol. Environ. Saf. 2019, 178, 25–32. [Google Scholar] [CrossRef]
- Wasim, M.; Sabir, A.; Shafiq, M.; Khan, R.U. Fractionation of direct dyes using modified vapor grown carbon nanofibers and zirconia in cellulose acetate blend membranes. Sci. Total. Environ. 2019, 677, 194–204. [Google Scholar] [CrossRef]
- Cazzola, M.; Corazzari, I.; Prenesti, E.; Bertonea, E.; Vernè, E.; Ferraris, S. Bioactive glass coupling with natural polyphenols: Surfacemodification, bioactivity and anti-oxidant ability. Appl. Surf. Sci. 2016, 367, 237–248. [Google Scholar] [CrossRef]
- Zhang, X.; Ferraris, S.; Prenesti, E.; Verné, E. Surface functionalization of bioactive glasses with natural moleculesof biological significance, part II: Grafting of polyphenolsextracted from grape skin. Appl. Surf. Sci. 2013, 287, 341–348. [Google Scholar] [CrossRef]
- Ferraris, S.; Zhang, X.; Prenesti, E.; Corazzari, I.; Turci, F.; Tomatis, M.; Vernè, E. Gallic acid grafting to a ferrimagnetic bioactive glass-ceramic. J. Non-Crystalline Solids 2016, 432, 167–175. [Google Scholar] [CrossRef]
- Yan, X.; Xu, T.; Chen, G.; Yang, S.; Liu, H.; Xue, Q. Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J. Phys. D Appl. Phys. 2004, 37, 907–913. [Google Scholar] [CrossRef]
- Sun, L.; Han, C.; Wu, N.; Wang, B.; Wang, Y. High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition. RSC Adv. 2018, 8, 13697–13707. [Google Scholar] [CrossRef]
- Fernandes, S.; Sadocco, P.; Alonso-Varona, A.; Palomares, T.; Eceiza, A.; Silvestre, A.J.; Mondragon, I.; Freire, C.S. Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl. Mater. Interfaces 2013, 5, 3290–3297. [Google Scholar] [CrossRef] [PubMed]
- De Castro, D.O.; Bras, J.; Gandini, A.; Belgacem, N.; Belgacem, M.N. Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr. Polym. 2016, 137, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Khanjanzadeh, H.; Behrooz, R.; Bahramifar, N.; Gindl-Altmutter, W.; Bacher, M.; Edler, M.; Griesser, T. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int. J. Boil. Macromol. 2018, 106, 1288–1296. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Naby, A.S.; Al-Ghamdi, A.A. Chemical modification of cellulose acetate by diallylamine. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 10–24. [Google Scholar]
Sample Name | wt (%) | Td5% (°C) | DTG (°C) |
---|---|---|---|
CA | 89 ± 1 | 204 ± 3 | 433 ± 1 |
CA/APTES | 86 ± 1 | 281 ± 3 | 431 ± 1 |
CA/APTES/GA | 88 ± 1 | 352 ± 3 | 430 ± 1 |
CA/APTES/GA/CAL | 98 ± 1 | 372 ± 3 | 433 ± 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serbanescu, O.S.; Pandele, A.M.; Miculescu, F.; Voicu, S.I. Synthesis and Characterization of Cellulose Acetate Membranes with Self-Indicating Properties by Changing the Membrane Surface Color for Separation of Gd(III). Coatings 2020, 10, 468. https://doi.org/10.3390/coatings10050468
Serbanescu OS, Pandele AM, Miculescu F, Voicu SI. Synthesis and Characterization of Cellulose Acetate Membranes with Self-Indicating Properties by Changing the Membrane Surface Color for Separation of Gd(III). Coatings. 2020; 10(5):468. https://doi.org/10.3390/coatings10050468
Chicago/Turabian StyleSerbanescu, Oana Steluta, Andreea Madalina Pandele, Florin Miculescu, and Stefan Ioan Voicu. 2020. "Synthesis and Characterization of Cellulose Acetate Membranes with Self-Indicating Properties by Changing the Membrane Surface Color for Separation of Gd(III)" Coatings 10, no. 5: 468. https://doi.org/10.3390/coatings10050468
APA StyleSerbanescu, O. S., Pandele, A. M., Miculescu, F., & Voicu, S. I. (2020). Synthesis and Characterization of Cellulose Acetate Membranes with Self-Indicating Properties by Changing the Membrane Surface Color for Separation of Gd(III). Coatings, 10(5), 468. https://doi.org/10.3390/coatings10050468