Effect of Addition of Mo or V on the Structure and Cutting Performance of AlCrN-Based Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition of Coating Technique
2.2. Coating Characterization Methods
3. Results and Discussion
3.1. Cross-Sectional and Surface Morphologies
3.2. Structure Analysis by XRD and XPS
3.3. Mechanical Property Analysis
3.4. Tribological Property
3.5. Cutting Performance of the Coated Cutters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jindal, P.; Santhanam, A.; Schleinkofer, U.; Shuster, A. Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning. Int. J. Refract. Met. Hard Mater. 1999, 17, 163–170. [Google Scholar] [CrossRef]
- Berger, O. The correlation between structure, multifunctional properties and application of PVD MAX phase coatings. Part. III. Multifunctional applications. Surf. Eng. 2019, 36, 303–325. [Google Scholar] [CrossRef]
- Willmann, H.; Mayrhofer, P.; Hultman, L.; Mitterer, C. Thermal stability and age hardening of supersaturated AlCrN hard coatings. Int. Heat Treat. Surf. Eng. 2007, 1, 75–79. [Google Scholar] [CrossRef]
- Xiao, B.; Li, H.; Mei, H.; Dai, W.; Wu, Z.; Wang, Q.; Zuo, F. A study of oxidation behavior of AlTiN-and AlCrN-based multilayer coatings. Surf. Coat. Technol. 2018, 333, 229–237. [Google Scholar] [CrossRef]
- Chen, W.; Lin, Y.; Zheng, J.; Zhang, S.; Liu, S.; Kwon, S. Preparation and characterization of CrAlN/TiAlSiN nano-multilayers by cathodic vacuum arc. Surf. Coat. Technol. 2015, 265, 205–211. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, S.; Lee, J.-W.; Li, B.; Wang, Y.; Zhao, D. Self-lubricating CrAlN/VN multilayer coatings at room temperature. Appl. Surf. Sci. 2013, 279, 189–196. [Google Scholar] [CrossRef]
- Raab, R.; Koller, C.; Kolozsvári, S.; Ramm, J.; Mayrhofer, P. Interfaces in arc evaporated Al-Cr-N/Al-Cr-O multilayers and their impact on hardness. Surf. Coat. Technol. 2017, 324, 236–242. [Google Scholar] [CrossRef]
- Pogrebnyak, A.D.; Shpak, A.P.; Azarenkov, N.A.; Beresnev, V.M. Structures and properties of hard and superhard nanocomposite coatings. Uspekhi Fiz. Nauk 2009, 179, 35–64. [Google Scholar] [CrossRef]
- Kindlund, H.; SanGiovanni, D.; Martínez-De-Olcoz, L.; Lu, J.; Jensen, J.; Birch, J.; Petrov, I.; Greene, J.E.; Chirita, V.; Hultman, L. Toughness enhancement in hard ceramic thin films by alloy design. APL Mater. 2013, 1, 042104. [Google Scholar] [CrossRef]
- Yousaf, M.; Pelenovich, V.; Yang, B.; Liu, C.; Zou, C. Influence of substrate rotation speed on the structure and mechanical properties of nanocrystalline AlTiN/MoN coatings synthesized by cathodic arc ion-plating. Surf. Coat. Technol. 2015, 265, 117–124. [Google Scholar] [CrossRef]
- Lisovenko, M.; Bondar, O.; Opielak, M.; Beresnev, V.; Konarski, P.; Sakenova, R.; Konstantinov, S.; Komarov, F.F. Structure and properties of nanoscale MoN/CrN multilayered coatings. In Proceedings of the 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP), Odesa, Ukraine, 10–15 September 2017. [Google Scholar]
- Han, B.; Wang, Z.; Devi, N.; Kondamareddy, K.K.; Wang, Z.; Li, N.; Zuo, W.; Zou, C.; Liu, C. RBS Depth Profiling Analysis of (Ti, Al)N/MoN and CrN/MoN Multilayers. Nanoscale Res. Lett. 2017, 12, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, H. High-Temperature Self-Lubricating Metal Nitride-Based Nanostructure Composite Films. In Friction, Lubrication and Wear; IntechOpen: London, UK, 2019. [Google Scholar]
- Pradhan, S.; Nouveau, C.; Vasin, A.; Djouadi, M.-A. Deposition of CrN coatings by PVD methods for mechanical application. Surf. Coat. Technol. 2005, 200, 141–145. [Google Scholar] [CrossRef]
- Romanov, D.; Moskovskii, S.; Konovalov, S.; Sosnin, K.; Gromov, V.; Ivanov, Y. Improvement of copper alloy properties in electro-explosive spraying of ZnO-Ag coatings resistant to electrical erosion. J. Mater. Res. Technol. 2019, 8, 5515–5523. [Google Scholar] [CrossRef]
- Romanov, D.; Moskovskii, S.; Martusevich, E.; Gayevoy, E.; Gromov, V. Structural-phase state of the system “CdO-Ag coating/copper substrate” formed by electroexplosive method. Metalurgija 2018, 57, 299–302. [Google Scholar]
- Romanov, D.; Gromov, V.; Glezer, A.; Panin, S.; Semin, A. Structure of electro-explosion resistant coatings consisting of immiscible components. Mater. Lett. 2017, 188, 25–28. [Google Scholar] [CrossRef]
- Jokar, K.; Elmkhah, H.; Fattah-Alhosseini, A.; Babaei, K.; Azolriasatein, A. Comparison of the wear and corrosion behavior between CrN and AlCrN coatings deposited by Arc-PVD method. Mater. Res. Express 2019, 6, 116426. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, W.; Chen, W.; Yang, S. Structural optimisation and synthesis of multilayers and nanocomposite AlCrTiSiN coatings for excellent machinability. Surf. Coat. Technol. 2015, 277, 23–29. [Google Scholar] [CrossRef]
- Yoon, C.S.; Kim, K.H.; Kwon, S.H.; Park, I.W. Syntheses and Properties of Cr-Al-Mo-N Coatings Fabricated by Using a Hybrid Coating System. J. Korean Phys. Soc. 2009, 54, 1237–1241. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, J.-W.; Duh, J.-G. Mechanical strengthening in self-lubricating CrAlN/VN multilayer coatings for improved high-temperature tribological characteristics. Surf. Coat. Technol. 2016, 303, 12–17. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, G.; Xu, X.; Yang, G.; Liu, M.; Shao, Z. Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum Nitride@Nitrogen-Doped carbon porous nano-octahedrons. ACS Catal. 2017, 7, 3540–3547. [Google Scholar] [CrossRef]
- Achour, A.; Islam, M.; Ahmad, I.; Saeed, K.; Solaymani, S. Electrochemical stability enhancement in reactive magnetron sputtered VN films upon annealing treatment. Coatings 2019, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhang, G.-J.; Jiang, B. Comparison in mechanical and tribological properties of CrTiAlMoN and CrTiAlN nano-multilayer coatings deposited by magnetron sputtering. Appl. Surf. Sci. 2016, 363, 217–224. [Google Scholar] [CrossRef]
- Endrino, J.; Derflinger, V. The influence of alloying elements on the phase stability and mechanical properties of AlCrN coatings. Surf. Coat. Technol. 2005, 200, 988–992. [Google Scholar] [CrossRef]
- Li, Z.; Raabe, D. Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties. JOM 2017, 69, 2099–2106. [Google Scholar] [CrossRef] [PubMed]
- Fateh, N.; Fontalvo, G.A.; Gassner, G.; Mitterer, C. The beneficial effect of high-temperature oxidation on the tribological behaviour of V and VN coatings. Tribol. Lett. 2007, 28, 1–7. [Google Scholar] [CrossRef]
- Mei, H.; Zhao, S.; Wu, Z.; Dai, W.; Wang, Q. Effect of nitrogen partial pressure on microstructure and mechanical properties of Mo-Cu-V-N composite coatings deposited by HIPIMS. Surf. Coat. Technol. 2017, 329, 68–76. [Google Scholar] [CrossRef]
- Chen, R. Principle of Metal Cutting; China Machine: Beijing, China, 1992. [Google Scholar]
- Fu, Y.; Li, H.; Ji, L.; Liu, X.; He, N.; Zhou, H.; Chen, J. Preparation and high-temperature tribological properties of CrAlVYN-Ag nanocomposite coatings. Mater. Manuf. Process. 2016, 32, 409–415. [Google Scholar] [CrossRef]
- Olovsjö, S.; Wretland, A.; Sjöberg, G. The effect of grain size and hardness of wrought Alloy 718 on the wear of cemented carbide tools. Wear 2010, 268, 1045–1052. [Google Scholar] [CrossRef]
- Li, A.; Zhao, J.; Hou, G. Effect of cutting speed on chip formation and wear mechanisms of coated carbide tools when ultra-high-speed face milling titanium alloy Ti-6Al-4V. Adv. Mech. Eng. 2017, 9, 1687814017713704. [Google Scholar] [CrossRef] [Green Version]
- Yue, Q.-B.; He, H.-B.; Li, H.-Y.; Zhang, J.; Li, Y.-M.; Ma, L. Research on friction characteristics of AlCrN and TiAlSiN coatings and properties of coated tools. Int. J. Precis. Eng. Manuf. 2019, 20, 1581–1589. [Google Scholar] [CrossRef]
- Stone, D.; Liu, J.; Singh, D.; Muratore, C.; Voevodin, A.A.; Mishra, S.; Rebholz, C.; Ge, Q.; Aouadi, S. Layered atomic structures of double oxides for low shear strength at high temperatures. Scr. Mater. 2010, 62, 735–738. [Google Scholar] [CrossRef]
Coating Parameters | AlCrN | AlCrN/AlCrMoN | AlCrN/AlCrVN |
---|---|---|---|
Bias Voltage(V) | −80 | −80 | −80 |
Arc Current (A) | 120(Al70Cr30) | 120(Al70Cr30)/130(Cr70Mo30) | 120(Al70Cr30)/130(Cr70V30) |
N2 flow rate (sccm) | 100 | 100 | 100 |
Temperature (°C) | 450 | 450 | 450 |
Pressure (Pa) | 3.5 | 3.5 | 3.5 |
Time (min) | 60 | 60 | 60 |
Coatings | Adhesion | Coefficient of Friction | Wear Rate (10−15m3/N·m) | Hardness (GPa) | Elastic Modules (GPa) |
---|---|---|---|---|---|
AlCrN coating | HF2 | 0.51 | 3.6 | 28.5 ± 0.4 | 302.9 ± 2.6 |
AlCrVN coating | HF1 | 0.5 | 1.52 | 33.9 ± 0.8 | 446.7 ± 2.1 |
AlCrMoN coating | HF1 | 0.42 | 2.42 | 29.3 ± 0.5 | 400.2 ± 2.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iram, S.; Cai, F.; Wang, J.; Zhang, J.; Liang, J.; Ahmad, F.; Zhang, S. Effect of Addition of Mo or V on the Structure and Cutting Performance of AlCrN-Based Coatings. Coatings 2020, 10, 298. https://doi.org/10.3390/coatings10030298
Iram S, Cai F, Wang J, Zhang J, Liang J, Ahmad F, Zhang S. Effect of Addition of Mo or V on the Structure and Cutting Performance of AlCrN-Based Coatings. Coatings. 2020; 10(3):298. https://doi.org/10.3390/coatings10030298
Chicago/Turabian StyleIram, Sidra, Fei Cai, Jianming Wang, Jiamin Zhang, Jiagang Liang, Farooq Ahmad, and Shihong Zhang. 2020. "Effect of Addition of Mo or V on the Structure and Cutting Performance of AlCrN-Based Coatings" Coatings 10, no. 3: 298. https://doi.org/10.3390/coatings10030298
APA StyleIram, S., Cai, F., Wang, J., Zhang, J., Liang, J., Ahmad, F., & Zhang, S. (2020). Effect of Addition of Mo or V on the Structure and Cutting Performance of AlCrN-Based Coatings. Coatings, 10(3), 298. https://doi.org/10.3390/coatings10030298