Insights in to the Electrochemical Activity of Fe-Based Perovskite Cathodes toward Oxygen Reduction Reaction for Solid Oxide Fuel Cells
Abstract
:1. Introduction
2. Experimental
2.1. Material Preparation
2.2. Characterization
2.3. Electrochemical Test
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fan, L.; Zhu, B.; Su, P.-C.; He, C. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 2018, 45, 148–176. [Google Scholar] [CrossRef]
- Choudhury, A.; Chandra, H.; Arora, A. Application of solid oxide fuel cell technology for power generation—A review. Renew. Sustain. Energy Rev. 2013, 20, 430–442. [Google Scholar] [CrossRef]
- Steele, B.C.H.; Heinzel, A. Materials for fuel-cell technologies. Nat. Cell Biol. 2001, 414, 345–352. [Google Scholar] [CrossRef]
- Liu, P.; Luo, Z.F.; Kong, J.R.; Yang, X.F.; Liu, Q.C.; Xu, H. Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based dual-gradient cathodes for solid oxide fuel cells. Ceram. Int. 2018, 44, 4516–4519. [Google Scholar] [CrossRef]
- Ding, H.; Xue, X. PrBa0.5Sr0.5Co2O5+δ layered perovskite cathode for intermediate temperature solid oxide fuel cells. Electrochim. Acta 2010, 55, 3812–3816. [Google Scholar] [CrossRef]
- Stambouli, A.; Traversa, E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 2002, 6, 433–455. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F.; Chen, D.; Dong, F.; Park, H.J.; Kwak, C.; Shao, Z. Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction. J. Power Sources 2012, 210, 146–153. [Google Scholar] [CrossRef]
- Zhou, W.; Shao, Z.; Ran, R.; Jin, W.; Xu, N. A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400–600 °C. Chem. Commun. 2008, 44, 5791–5793. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Long, W.; Jin, F.; He, T. Cobalt-free perovskite cathode materials SrFe1−xTixO3−δ and performance optimization for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 2014, 123, 426–434. [Google Scholar] [CrossRef]
- Rehman, A.U.; Li, M.; Knibbe, R.; Khan, M.S.; Peterson, V.K.; Brand, H.E.A.; Li, Z.; Zhou, W.; Zhu, Z. Enhancing Oxygen Reduction Reaction Activity and CO2 Tolerance of Cathode for Low-Temperature Solid Oxide Fuel Cells by in Situ Formation of Carbonates. ACS Appl. Mater. Interfaces 2019, 11, 26909–26919. [Google Scholar] [CrossRef]
- Liou, Y.C.; Chen, Y.R. Synthesis and microstructure of (LaSr)MnO3 and (LaSr)FeO3 ceramics by a reaction-sintering process. Ceram. Int. 2008, 34, 273–278. [Google Scholar]
- Dong, F.; Chen, D.; Chen, Y.; Zhao, Q.; Shao, Z. La-doped BaFeO3−δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte. J. Mater. Chem. 2012, 22, 15071–15079. [Google Scholar] [CrossRef]
- Baiyee, Z.M.; Chen, C.; Ciucci, F. A DFT+U study of A-site and B-site substitution in BaFeO3−δ. Phys. Chem. Chem. Phys. 2015, 17, 23511–23520. [Google Scholar] [CrossRef]
- Wang, J.; Saccoccio, M.; Chen, D.J.; Gao, Y.; Chen, C.; Ciucci, F. The effect of A-site and B-site substitution on BaFeO3−δ: An investigation as a cathode material for intermediate-temperature solid oxide fuel cells. J. Power Sources 2015, 297, 511–518. [Google Scholar] [CrossRef]
- Dong, F.; Ni, M.; He, W.; Chen, Y.; Yang, G.; Chen, D.; Shao, Z. An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0.95Sn0.05O3−δ. J. Power Sources 2016, 326, 459–465. [Google Scholar] [CrossRef]
- Dong, F.; Chen, Y.; Ran, R.; Chen, D.; Tadé, M.O.; Liu, S.; Shao, Z. BaNb0.05Fe0.95O3−δ as a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells. J. Mater. Chem. A 2013, 1, 9781–9791. [Google Scholar] [CrossRef]
- Wang, J.; Lam, K.Y.; Saccoccio, M.; Gao, Y.; Chen, D.; Ciucci, F. Ca and in co-doped BaFeO3−δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells. J. Power Sources 2016, 324, 224–232. [Google Scholar] [CrossRef]
- Gao, L.; Zhu, M.Z.; Xia, T.; Li, Q.; Li, T.S.; Zhao, H. Ni-doped BaFeO3−δ perovskite oxide as highly active cathode electrocatalyst for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 2018, 289, 428–436. [Google Scholar]
- Lu, Y.; Zhao, H.L.; Cheng, X.; Jia, Y.B.; Du, X.F.; Fang, M.Y.; Du, Z.H.; Zheng, K.; Świerczek, K. Investigation of In-doped BaFeO3−δ perovskite-type oxygen permeable membranes. J. Mater. Chem. A 2015, 3, 6202–6214. [Google Scholar] [CrossRef]
- Liu, X.T.; Zhao, H.L.; Yang, J.Y.; Li, Y.; Chen, T.; Lu, X.G. Lattice characteristics, structure stability and oxygen permeability of BaFe1−xYxO3−δ ceramic membranes. J. Membr. Sci. 2011, 383, 235–240. [Google Scholar]
- Lu, Y.; Zhao, H.L.; Chang, X.W.; Du, X.F.; Li, K.; Ma, Y.H.; Yi, S.; Du, Z.H.; Zheng, K.; Świerczek, K. Novel cobalt-free BaFe1−xGdxO3−δ perovskite membranes for oxygen separation. J. Mater. Chem. A 2016, 4, 10454–10466. [Google Scholar]
- Gao, L.; Li, Q.; Sun, L.P.; Zhang, X.F.; Huo, L.H.; Zhao, H.; Grenier, J. A novel family of Nb-doped Bi0.5Sr0.5FeO3−δ perovskite as cathode material for intermediate-temperature solid oxide fuel cells. J. Power Sources 2017, 371, 86–95. [Google Scholar] [CrossRef]
- Lu, F.; Xia, T.; Li, Q.; Wang, J.; Huo, L.; Zhao, H. Heterostructured simple perovskite nanorod-decorated double perovskite cathode for solid oxide fuel cells: Highly catalytic activity, stability and CO2-durability for oxygen reduction reaction. Appl. Catal. B Environ. 2019, 249, 19–31. [Google Scholar] [CrossRef]
- Zhu, M.; Cai, Z.; Xia, T.; Li, Q.; Huo, L.; Zhao, H. Cobalt-free perovskite BaFe0.85Cu0.15O3−δ cathode material for intermediate-temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2016, 41, 4784–4791. [Google Scholar] [CrossRef]
- Xia, W.W.; Li, Q.; Sun, L.P.; Huo, L.H.; Zhao, H. Enhanced electrochemical performance and CO2 tolerance of Ba0.95La0.05Fe0.85Cu0.15O3−δ as Fe-based cathode electrocatalyst for solid oxide fuel cells. J. Eur. Ceram. Soc. 2020, 40, 1967–1974. [Google Scholar] [CrossRef]
- Cai, H.D.; Xu, J.S.; Wu, M.; Long, W.; Zhang, L.; Song, Z.Y.; Zhang, L.L. A novel cobalt-free La0.5Ba0.5Fe0.95Mo0.05O3−δ electrode for symmetric solid oxide fuel cell. J. Eur. Ceram. Soc. 2020, 40, 4361–4365. [Google Scholar] [CrossRef]
- Zapata-Ramírez, V.; Mather, G.C.; Azcondo, M.T.; Amador, U.; Pérez-Coll, D. Electrical and electrochemical properties of the Sr(Fe,Co,Mo)O3−δ system as air electrode for reversible solid oxide cells. J. Power Sources 2019, 437, 226895. [Google Scholar] [CrossRef]
- Cai, W.; Guo, Y.; Zhang, T.; Guo, T.; Chen, H.; Lin, B.; Ou, X.; Liu, X. Characterization and polarization DRT analysis of a stable and highly active proton-conducting cathode. Ceram. Int. 2018, 44, 14297–14302. [Google Scholar] [CrossRef]
- Xia, J.; Wang, C.; Wang, X.F.; Bi, L.; Zhang, Y.X. A perspective of DRT analysis for electrodes in solid oxide cells. Electrochim. Acta 2020, 349, 136328. [Google Scholar]
- Li, S.L.; Zhang, L.K.; Xia, T.; Li, Q.; Sun, L.P.; Huo, L.H.; Zhao, H. Synergistic effect study of EuBa0.98Co2O5+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. J. Alloy. Comp. 2019, 771, 513–521. [Google Scholar] [CrossRef]
- Escudero, M.; Aguadero, A.; Alonso, J.; Daza, L. A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. J. Electroanal. Chem. 2007, 611, 107–116. [Google Scholar] [CrossRef]
- Takeda, Y.; Kanno, R.; Noda, M.; Tomida, Y.; Yamamoto, O. Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia. J. Electrochem. Soc. 1987, 134, 2656–2661. [Google Scholar] [CrossRef]
- Li, J.; Huo, J.; Lu, Y.; Wang, Q.; Xi, X.; Fan, Y.; Fu, X.Z.; Luo, J.L. Ca-containing Ba0.95Ca0.05Co0.4Fe0.4Zr0.1Y0.1O3−δ cathode with high CO2-poisoning tolerance for proton-conducting solid oxide fuel cells. J. Power Sources 2020, 453, 227909. [Google Scholar] [CrossRef]
- Bucher, E.; Egger, A.; Caraman, G.B.; Sitte, W. Stability of the SOFC cathode materials (Ba,Sr)(Co,Fe)O3−δ in CO2-containing atmospheres. J. Electrochem. Soc. 2008, 155, B1218–B1224. [Google Scholar] [CrossRef]
- Gu, H.; Sunarso, J.; Yang, G.; Zhou, C.; Song, Y.; Zhang, Y.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Turning Detrimental Effect into Benefits: Enhanced Oxygen Reduction Reaction Activity of Cobalt-Free Perovskites at Intermediate Temperature via CO2-Induced Surface Activation. ACS Appl. Mater. Interfaces 2020, 12, 16417–16425. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, G.; Chen, G.; Ran, R.; Zhou, W.; Shao, Z. Evaluation of the CO2 Poisoning Effect on a Highly Active Cathode SrSc0.175Nb0.025Co0.8O3−δ in the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8, 3003–3011. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, W.; Chen, Y.; Shao, Z. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells. Angew. Chem. 2016, 128, 9134–9139. [Google Scholar] [CrossRef]
- Wang, S.F.; Yeh, C.T.; Wang, Y.R.; Hsu, Y.F. Effect of (LaSr)(CoFeCu)O3−δ cathodes on the characteristics of intermediate temperature solid oxide fuel cells. J. Power Sources 2012, 201, 18–25. [Google Scholar] [CrossRef]
- Shi, H.; Ding, Z.; Ma, G. Electrochemical Performance of Cobalt-free Nd0.5Ba0.5Fe1−xNixO3−δ Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells. Fuel Cells 2016, 16, 258–262. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, Z.; Zhao, Y.; Chen, M.; Wang, S. Properties characterization of tungsten doped strontium ferrites as cathode materials for intermediate temperature solid oxide fuel cells. Electrochim. Acta 2017, 250, 203–211. [Google Scholar] [CrossRef]
- Song, X.Q.; Le, S.R.; Zhu, X.D.; Qin, L.; Luo, Y.; Li, Y.W.; Sun, K.N.; Chen, Y. High performance BaFe1−xBixO3−δ as cobalt-free cathodes for intermediate temperature solid oxide fuel cell. Int. J. Hydrog. Energy 2017, 42, 15808–15817. [Google Scholar] [CrossRef]
- Ren, R.; Wang, Z.; Meng, X.; Xu, C.; Qiao, J.; Sun, W.; Sun, K. Boosting the Electrochemical Performance of Fe-Based Layered Double Perovskite Cathodes by Zn2+ Doping for Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2020, 12, 23959–23967. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Guo, W.; Guo, R.; Liu, Z.; Sun, D.; Meng, L.; Zheng, M.; Wang, B. Synthesis and electrochemical properties of BaFe1−xCuxO3−δ perovskite oxide for IT-SOFC cathode. Fuel Cells 2016, 16, 829–838. [Google Scholar] [CrossRef]
- Ni, W.; Zhu, T.; Chen, X.; Zhong, Q.; Ma, W. Stable, efficient and cost-competitive Ni-substituted Sr (Ti,Fe)O3 cathode for solid oxide fuel cell: Effect of A-site deficiency. J. Power Sources 2020, 451, 227762. [Google Scholar] [CrossRef]
Space Group | x = 0.05 | x = 0.1 | x = 0.15 |
---|---|---|---|
Pm-3m | Pm-3m | Pm-3m | |
a (Å) | 4.066 | 4.091 | 4.104 |
b (Å) | 4.066 | 4.091 | 4.104 |
c (Å) | 4.066 | 4.091 | 4.104 |
V (Å3) | 67.220 | 68.468 | 69.148 |
χ2 | 2.171 | 1.906 | 4.190 |
Rwp (%) | 7.762 | 7.664 | 9.811 |
RP (%) | 5.975 | 6.023 | 7.878 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, D.; Gao, J.; Xia, T.; Li, Q.; Sun, L.; Huo, L.; Zhao, H. Insights in to the Electrochemical Activity of Fe-Based Perovskite Cathodes toward Oxygen Reduction Reaction for Solid Oxide Fuel Cells. Coatings 2020, 10, 1260. https://doi.org/10.3390/coatings10121260
Ma D, Gao J, Xia T, Li Q, Sun L, Huo L, Zhao H. Insights in to the Electrochemical Activity of Fe-Based Perovskite Cathodes toward Oxygen Reduction Reaction for Solid Oxide Fuel Cells. Coatings. 2020; 10(12):1260. https://doi.org/10.3390/coatings10121260
Chicago/Turabian StyleMa, Dan, Juntao Gao, Tian Xia, Qiang Li, Liping Sun, Lihua Huo, and Hui Zhao. 2020. "Insights in to the Electrochemical Activity of Fe-Based Perovskite Cathodes toward Oxygen Reduction Reaction for Solid Oxide Fuel Cells" Coatings 10, no. 12: 1260. https://doi.org/10.3390/coatings10121260
APA StyleMa, D., Gao, J., Xia, T., Li, Q., Sun, L., Huo, L., & Zhao, H. (2020). Insights in to the Electrochemical Activity of Fe-Based Perovskite Cathodes toward Oxygen Reduction Reaction for Solid Oxide Fuel Cells. Coatings, 10(12), 1260. https://doi.org/10.3390/coatings10121260