Next Issue
Volume 4, June
Previous Issue
Volume 3, December
 
 

Antibiotics, Volume 4, Issue 1 (March 2015) – 7 articles , Pages 1-135

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1302 KiB  
Article
Purification of a Multidrug Resistance Transporter for Crystallization Studies
by Kamela O. Alegre and Christopher J. Law
Antibiotics 2015, 4(1), 113-135; https://doi.org/10.3390/antibiotics4010113 - 5 Mar 2015
Cited by 5 | Viewed by 9985
Abstract
Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and [...] Read more.
Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters. Full article
(This article belongs to the Special Issue Multi-drug Efflux and Drug Permeation)
Show Figures

Figure 1

3473 KiB  
Article
Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain
by Dipti S. Hattangady, Atul K. Singh, Arun Muthaiyan, Radheshyam K. Jayaswal, John E. Gustafson, Alexander V. Ulanov, Zhong Li, Brian J. Wilkinson and Richard F. Pfeltz
Antibiotics 2015, 4(1), 76-112; https://doi.org/10.3390/antibiotics4010076 - 4 Feb 2015
Cited by 14 | Viewed by 8743
Abstract
Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with [...] Read more.
Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136pm+V20 (vancomycin MIC = 16 µg/mL) than strain 13136pm+V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype. Full article
(This article belongs to the Special Issue Mechanisms of Antibiotic Resistance)
Show Figures

Figure 1

831 KiB  
Review
NETs and CF Lung Disease: Current Status and Future Prospects
by Robert D. Gray, Brian N. McCullagh and Paul B. McCray, Jr.
Antibiotics 2015, 4(1), 62-75; https://doi.org/10.3390/antibiotics4010062 - 15 Jan 2015
Cited by 41 | Viewed by 12780
Abstract
Cystic Fibrosis (CF) is the most common fatal monogenic disease among Caucasians. While CF affects multiple organ systems, the principle morbidity arises from progressive destruction of lung architecture due to chronic bacterial infection and inflammation. It is characterized by an innate immune defect [...] Read more.
Cystic Fibrosis (CF) is the most common fatal monogenic disease among Caucasians. While CF affects multiple organ systems, the principle morbidity arises from progressive destruction of lung architecture due to chronic bacterial infection and inflammation. It is characterized by an innate immune defect that results in colonization of the airways with bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa from an early age. Within the airway microenvironment the innate immune cells including epithelial cells, neutrophils, and macrophages have all been implicated in the host defense defect. The neutrophil, however, is the principal effector cell facilitating bacterial killing, but also participates in lung damage. This is evidenced by a disproportionately elevated neutrophil burden in the airways and increased neutrophil products capable of tissue degradation, such as neutrophil elastase. The CF airways also contain an abundance of nuclear material that may be originating from neutrophils. Neutrophil extracellular traps (NETs) are the product of a novel neutrophil death process that involves the expulsion of nuclear material embedded with histones, proteases, and antimicrobial proteins and peptides. NETs have been postulated to contribute to the bacterial killing capacity of neutrophils, however they also function as a source of proteases and other neutrophil products that may contribute to lung injury. Targeting nuclear material with inhaled DNase therapy improves lung function and reduces exacerbations in CF and some of these effects may be due to the degradation of NETs. We critically discuss the evidence for an antimicrobial function of NETs and their potential to cause lung damage and inflammation. We propose that CF animal models that recapitulate the human CF phenotype such as the CFTR−/− pig may be useful in further elucidating a role for NETs. Full article
(This article belongs to the Special Issue Antimicrobial Peptides)
Show Figures

Figure 1

677 KiB  
Review
Augmentation of Cationic Antimicrobial Peptide Production with Histone Deacetylase Inhibitors as a Novel Epigenetic Therapy for Bacterial Infections
by Roshan D. Yedery and Ann E. Jerse
Antibiotics 2015, 4(1), 44-61; https://doi.org/10.3390/antibiotics4010044 - 12 Jan 2015
Cited by 30 | Viewed by 10726
Abstract
The emergence of antibiotic resistance seriously threatens our ability to treat many common and medically important bacterial infections. Novel therapeutics are needed that can be used alone or in conjunction with antibiotics. Cationic antimicrobial peptides (CAMPs) are important effectors of the host innate [...] Read more.
The emergence of antibiotic resistance seriously threatens our ability to treat many common and medically important bacterial infections. Novel therapeutics are needed that can be used alone or in conjunction with antibiotics. Cationic antimicrobial peptides (CAMPs) are important effectors of the host innate defense that exhibit broad-spectrum activity against a wide range of microorganisms. CAMPs are carried within phagocytic granules and are constitutively or inducibly expressed by multiple cell types, including epithelial cells. The role of histone modification enzymes, specifically the histone deacetylases (HDAC), in down-regulating the transcription of CAMP-encoding genes is increasingly appreciated as is the capacity of HDAC inhibitors (HDACi) to block the action of HDACs to increase CAMP expression. The use of synthetic and natural HDACi molecules to increase CAMPs on mucosal surfaces, therefore, has potential therapeutic applications. Here, we review host and pathogen regulation of CAMP expression through the induction of HDACs and assess the therapeutic potential of natural and synthetic HDACi based on evidence from tissue culture systems, animal models, and clinical trials. Full article
(This article belongs to the Special Issue Antimicrobial Peptides)
Show Figures

Figure 1

236 KiB  
Editorial
Acknowledgement to Reviewers of Antibiotics in 2014
by Antibiotics Editorial Office
Antibiotics 2015, 4(1), 42-43; https://doi.org/10.3390/antibiotics4010042 - 8 Jan 2015
Viewed by 4093
Abstract
The editors of Antibiotics would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2014:[...] Full article
1887 KiB  
Review
Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria
by Victor I. Band and David S. Weiss
Antibiotics 2015, 4(1), 18-41; https://doi.org/10.3390/antibiotics4010018 - 25 Dec 2014
Cited by 128 | Viewed by 21870
Abstract
Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be [...] Read more.
Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance. Full article
(This article belongs to the Special Issue Antimicrobial Peptides)
Show Figures

Figure 1

634 KiB  
Review
The Role of Antifungals against Candida Biofilm in Catheter-Related Candidemia
by Emilio Bouza, Jesús Guinea and María Guembe
Antibiotics 2015, 4(1), 1-17; https://doi.org/10.3390/antibiotics4010001 - 25 Dec 2014
Cited by 43 | Viewed by 8895
Abstract
Catheter-related bloodstream infection (C-RBSI) is one of the most frequent nosocomial infections. It is associated with high rates of morbidity and mortality. Candida spp. is the third most common cause of C-RBSI after coagulase-negative staphylococci and Staphylococcus aureus and is responsible for approximately [...] Read more.
Catheter-related bloodstream infection (C-RBSI) is one of the most frequent nosocomial infections. It is associated with high rates of morbidity and mortality. Candida spp. is the third most common cause of C-RBSI after coagulase-negative staphylococci and Staphylococcus aureus and is responsible for approximately 8% of episodes. The main cause of catheter-related candidemia is the ability of some Candida strains—mainly C. albicans and C. parapsilosis—to produce biofilms. Many in vitro and in vivo models have been designed to assess the activity of antifungal drugs against Candida biofilms. Echinocandins have proven to be the most active antifungal drugs. Potential options in situations where the catheter cannot be removed include the combination of systemic and lock antifungal therapy. However, well-designed and -executed clinical trials must be performed before firm recommendations can be issued. Full article
Previous Issue
Next Issue
Back to TopTop