You are currently viewing a new version of our website. To view the old version click .
Antibiotics
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

15 December 2025

Proteomic Analysis of the Differential Response of Pseudomonas aeruginosa and Staphylococcus aureus to Lacticaseibacillus rhamnosus Cell-Free Supernatant and Lactic Acid

,
,
,
and
1
Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
2
Department of Biology, Maynooth University, W23 F2K8 Maynooth, Ireland
*
Authors to whom correspondence should be addressed.
This article belongs to the Special Issue Antibiotics: Fighting Disease and Promoting Health by Embracing the Two Sides of the Same Coin

Abstract

Background/Objectives: Postbiotics derived from lactic acid bacteria are emerging as promising antimicrobial agents due to their antibacterial, antibiofilm, and immunomodulatory properties. Among their metabolites, lactic acid (LA) is thought to play a major role in antimicrobial activity. This study investigated the proteomic response of Pseudomonas aeruginosa and Staphylococcus aureus to Lacticaseibacillus rhamnosus cell-free supernatant (CFS) and compared it with that elicited by LA alone. Methods: Overnight bacterial cultures were exposed to sub-MIC LA or CFS (1:10 for P. aeruginosa and 1:8 for S. aureus; ~12.5–15.6 mM LA) for 6 h at 37 °C. Intracellular proteins were harvested and subsequently quantified and purified to be analysed by HPLC–MS/MS, for quantitative label-free proteomics. Results: Proteomic analysis revealed clear separation of treated samples from controls, with largely overlapping responses to CFS and LA. Hallmark acid-stress adaptations were observed, including urease-mediated pH buffering, confirming that part of the response was driven by mild organic acid. In P. aeruginosa, treatments suppressed virulence pathways (phenazines, T3SS), while shifting metabolism toward lactate utilisation and reinforcing the outer membrane (lipid A, polyamine). In S. aureus, decreased abundance of the SaeRS-regulated immune-evasion factor Sbi, together with changes in envelope, ROS and translation-related proteins, suggested a bacteriostatic-like state. S. aureus differences between CFS and LA were more pronounced; CFS uniquely increased cell-wall defences, oxidative stress (SodA, SodM) and chaperone expression (GroS, GrpE), suggesting stress beyond acidification alone. Conclusions: These findings shed light on the molecular mechanisms underlying bacterial adaptation to CFS and highlight their potential as a novel antimicrobial approach.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.