Antibiotic Susceptibility of Aerobic and Facultative Anaerobic Gram-Negative Rods in Hong Kong and Implications on Usefulness of Ceftazidime-Avibactam and Ceftolozane-Tazobactam
Abstract
:1. Introduction
2. Results
2.1. Collection of Bacterial Strains
2.2. Antimicrobial Susceptibilities of Non-Multidrug Resistant (MDR) Isolates
2.3. Antimicrobial Susceptibilities of MDR Isolates
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Detection of ESBL Production
4.3. Detection of Carbapenemase Production
4.4. Determination of Antimicrobial Susceptibility by Broth Microdilution Method
4.5. Determination of Antimicrobial Susceptibility Using MIC Test Strip Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bush, K.; Bradford, P.A. Epidemiology of beta-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef]
- Bush, K. Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Crit. Care 2010, 14, 224. [Google Scholar] [CrossRef]
- El-Sayed Ahmed, M.A.E.; Zhong, L.L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.; Martelli, P.; Hui, S.W.; Teng, J.L.L.; Lau, S.K.P.; Woo, P.C.Y. In Vitro Susceptibility of Ceftolozane-Tazobactam against Burkholderia pseudomallei. Antimicrob. Agents Chemother. 2018, 62, e00103-18. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.; Wu, A.K.L.; Tse, C.W.S.; Lau, S.K.P.; Woo, P.C.Y. In vitro susceptibility of Salmonella enterica serovar Typhi to ceftolozane/tazobactam. J. Antimicrob. Chemother. 2019, 74, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Daikos, G.L.; da Cunha, C.A.; Rossolini, G.M.; Stone, G.G.; Baillon-Plot, N.; Tawadrous, M.; Irani, P. Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa. Antibiotics 2021, 10, 1126. [Google Scholar] [CrossRef]
- Lizza, B.D.; Betthauser, K.D.; Ritchie, D.J.; Micek, S.T.; Kollef, M.H. New Perspectives on Antimicrobial Agents: Ceftolozane-Tazobactam. Antimicrob. Agents Chemother. 2021, 65, e0231820. [Google Scholar] [CrossRef]
- Shirley, M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018, 78, 675–692. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.L.L.; Chan, E.; Dai, A.C.H.; Ng, G.; Li, T.T.; Lai, C.; Wu, A.K.L.; Lau, S.K.P.; Woo, P.C.Y. In Vitro Susceptibility of Typhoidal, Nontyphoidal, and Extended-Spectrum-beta-Lactamase-Producing Salmonella to Ceftolozane/Tazobactam. Antimicrob. Agents Chemother. 2022, 66, e0122421. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Chung, P.; Adam, H.; Zelenitsky, S.; Denisuik, A.; Schweizer, F.; Lagace-Wiens, P.R.; Rubinstein, E.; Gin, A.S.; Walkty, A.; et al. Ceftolozane/tazobactam: A novel cephalosporin/beta-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014, 74, 31–51. [Google Scholar] [CrossRef]
- Castanheira, M.; Doyle, T.B.; Mendes, R.E.; Sader, H.S. Comparative Activities of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Enterobacteriaceae Isolates Producing Extended-Spectrum beta-Lactamases from U.S. Hospitals. Antimicrob. Agents Chemother. 2019, 63, e00160-19. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Castillo, M.; Garcia-Fernandez, S.; Gomez-Gil, R.; Pitart, C.; Oviano, M.; Gracia-Ahufinger, I.; Diaz-Reganon, J.; Tato, M.; Canton, R.; iCREST Study Group. Activity of ceftazidime-avibactam against carbapenemase-producing Enterobacteriaceae from urine specimens obtained during the infection-carbapenem resistance evaluation surveillance trial (iCREST) in Spain. Int. J. Antimicrob. Agents 2018, 51, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Biedenbach, D.J.; Kazmierczak, K.M.; Stone, G.G.; Sahm, D.F. Activity of Ceftazidime-Avibactam against Extended-Spectrum- and AmpC beta-Lactamase-Producing Enterobacteriaceae Collected in the INFORM Global Surveillance Study from 2012 to 2014. Antimicrob. Agents Chemother. 2016, 60, 2849–2857. [Google Scholar] [CrossRef]
- van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation beta-Lactam/beta-Lactamase Inhibitor Combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef]
- Kang, K.; Ni, Y.; Li, J.; Imamovic, L.; Sarkar, C.; Kobler, M.D.; Heshiki, Y.; Zheng, T.; Kumari, S.; Wong, J.C.Y.; et al. The Environmental Exposures and Inner- and Intercity Traffic Flows of the Metro System May Contribute to the Skin Microbiome and Resistome. Cell Rep. 2018, 24, 1190–1202. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Bougouffa, S.; Park, T.J.; Lau, A.; Tong, M.K.; Chow, K.H.; Ho, P.L. Sharing of Antimicrobial Resistance Genes between Humans and Food Animals. mSystems 2022, 7, e0077522. [Google Scholar] [CrossRef] [PubMed]
- M100-2023; Performance Standards for Antimicrobial Susceptibility Testing; 33rd Informational Supplement M100, 33th ed. Clinical and Laboratory Standards Institute, CLSI: Wayne, PA, USA, 2023.
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Katz, D.E.; Marchaim, D. The Continuing Plague of Extended-Spectrum beta-Lactamase Producing Enterbacterales Infections: An Update. Infect. Dis. Clin. N. Am. 2020, 34, 677–708. [Google Scholar] [CrossRef]
- Kwok, K.O.; Chan, E.; Chung, P.H.; Tang, A.; Wei, W.I.; Zhu, C.; Riley, S.; Ip, M. Prevalence and associated factors for carriage of Enterobacteriaceae producing ESBLs or carbapenemase and methicillin-resistant Staphylococcus aureus in Hong Kong community. J. Infect. 2020, 81, 242–247. [Google Scholar] [CrossRef]
- Ho, P.L.; Wu, T.C.; Chao, D.V.K.; Hung, I.F.N.; Lui, L.; Lung, D.C.; Tang, T.H.C.; Wu, A.K.L. Reducing Bacterial Resistance with IMPACT, 5th ed.; Centre for Health Protection, Department of Health: Hong Kong, China, 2017.
- Sheu, C.C.; Chang, Y.T.; Lin, S.Y.; Chen, Y.H.; Hsueh, P.R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front. Microbiol. 2019, 10, 80. [Google Scholar] [CrossRef]
- Bianco, G.; Lombardo, D.; Ricciardelli, G.; Boattini, M.; Comini, S.; Cavallo, R.; Costa, C.; Ambretti, S. Multicentre Evaluation of the EUCAST Rapid Antimicrobial Susceptibility Testing (RAST) Extending Analysis to 16–20 Hours Reading Time. Antibiotics 2022, 11, 1404. [Google Scholar] [CrossRef] [PubMed]
- Prinzi, A.M. What’s old is new: Leveraging existing antimicrobial susceptibility test methods for rapid results in patients with bloodstream infections. Microbiol. Spectr. 2024, e0099524. [Google Scholar] [CrossRef] [PubMed]
- Comini, S.; Bianco, G.; Boattini, M.; Banche, G.; Ricciardelli, G.; Allizond, V.; Cavallo, R.; Costa, C. Evaluation of a diagnostic algorithm for rapid identification of Gram-negative species and detection of extended-spectrum beta-lactamase and carbapenemase directly from blood cultures. J. Antimicrob. Chemother. 2022, 77, 2632–2641. [Google Scholar] [CrossRef] [PubMed]
- Gogry, F.A.; Siddiqui, M.T.; Sultan, I.; Haq, Q.M.R. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front. Med. 2021, 8, 677720. [Google Scholar] [CrossRef]
- Alatoom, A.; Elsayed, H.; Lawlor, K.; AbdelWareth, L.; El-Lababidi, R.; Cardona, L.; Mooty, M.; Bonilla, M.F.; Nusair, A.; Mirza, I. Comparison of antimicrobial activity between ceftolozane-tazobactam and ceftazidime-avibactam against multidrug-resistant isolates of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Int. J. Infect. Dis. 2017, 62, 39–43. [Google Scholar] [CrossRef]
- Tumbarello, M.; Raffaelli, F.; Giannella, M.; Mantengoli, E.; Mularoni, A.; Venditti, M.; De Rosa, F.G.; Sarmati, L.; Bassetti, M.; Brindicci, G.; et al. Ceftazidime-Avibactam Use for Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Infections: A Retrospective Observational Multicenter Study. Clin. Infect. Dis. 2021, 73, 1664–1676. [Google Scholar] [CrossRef]
- Wi, Y.M.; Greenwood-Quaintance, K.E.; Schuetz, A.N.; Ko, K.S.; Peck, K.R.; Song, J.H.; Patel, R. Activity of Ceftolozane-Tazobactam against Carbapenem-Resistant, Non-Carbapenemase-Producing Pseudomonas aeruginosa and Associated Resistance Mechanisms. Antimicrob. Agents Chemother. 2018, 62, e01970-17. [Google Scholar] [CrossRef]
- Yin, D.; Wu, S.; Yang, Y.; Shi, Q.; Dong, D.; Zhu, D.; Hu, F.; China Antimicrobial Surveillance Network Study, G. Results from the China Antimicrobial Surveillance Network (CHINET) in 2017 of the In Vitro Activities of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e02431-18. [Google Scholar] [CrossRef]
- Escola-Verge, L.; Larrosa, N.; Los-Arcos, I.; Vinado, B.; Gonzalez-Lopez, J.J.; Pigrau, C.; Almirante, B.; Len, O. Infections by OXA-48-like-producing Klebsiella pneumoniae non-co-producing extended-spectrum beta-lactamase: Can they be successfully treated with cephalosporins? J. Glob. Antimicrob. Resist. 2019, 19, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A.B.; Bernabeu, S.; Emeraud, C.; Bonnin, R.A.; Lomont, A.; Zahar, J.R.; Merens, A.; Isnard, C.; Soismier, N.; Farfour, E.; et al. Evaluation of ceftolozane-tazobactam susceptibility on a French nationwide collection of Enterobacterales. J. Glob. Antimicrob. Resist. 2023, 32, 78–84. [Google Scholar] [CrossRef]
- M07-A11; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed. Clinical and Laboratory Standards Institute, CLSI: Wayne, PA, USA, 2018.
- Singhal, L.; Verma, S.; Sharma, M.; Sethi, S.; Ray, P.; Gautam, V. In-house pre-prepared broth microdilution plates: A simple, cheap and pragmatic approach for susceptibility testing of colistin. Int. J. Infect. Dis. 2020, 101, 78. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical; Microbiology and Infectious Diseases (ESCMID). EUCAST Definitive Document E.DEF 3.1, June 2000: Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Agent a,b | MIC (mg/L) | Susceptibility d (%) | |||||
---|---|---|---|---|---|---|---|
Range | MIC50 c | MIC90 c | S | SDD | I | R | |
Non-MDR E. coli (n = 92) | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | 0.094 | 0.19 | 100 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | 0.19 | 0.38 | 98.9 | - | 0.0 | 1.1 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | 2 | 32 | 88.0 | 1.1 | - | 10.9 |
Ceftazidime | ≤0.125 to ≥256 | 0.25 | 1 | 94.6 | - | 1.1 | 4.3 |
Meropenem | ≤0.125 to ≥256 | ≤0.125 | 0.25 | 98.9 | - | 0.0 | 1.1 |
Cefepime | ≤0.125 to ≥256 | ≤0.125 | 2 | 92.4 | 4.3 | - | 3.3 |
Colistin | ≤0.125 to ≥256 | 0.125 | 0.5 | - | - | 97.8 | 2.2 |
ESBL-producing E. coli (n = 44) | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | 0.125 | 0.25 | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | 0.25 | 0.5 | 97.7 | - | 0.0 | 2.3 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | 4 | 64 | 61.4 | 6.8 | - | 31.8 |
Ceftazidime | ≤0.125 to ≥256 | 8 | 128 | 36.4 | - | 13.6 | 50.0 |
Meropenem | ≤0.125 to ≥256 | ≤0.125 | 0.5 | 100.0 | - | 0.0 | 0.0 |
Cefepime | ≤0.125 to ≥256 | 16 | 128 | 15.9 | 22.7 | - | 61.4 |
Colistin | ≤0.125 to ≥256 | 0.125 | 0.5 | - | - | 97.7 | 2.3 |
Carbapenamase-producing E. coli (n = 1) g | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | - | - | 0.0 | - | - | 100 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | - | - | 0.0 | - | 0.0 | 100 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | - | - | 0.0 | 0.0 | - | 100 |
Ceftazidime | ≤0.125 to ≥256 | - | - | 0.0 | - | 0.0 | 100 |
Meropenem | ≤0.125 to ≥256 | - | - | 0.0 | - | 0.0 | 100 |
Cefepime | ≤0.125 to ≥256 | - | - | 0.0 | 0.0 | - | 100 |
Colistin | ≤0.125 to ≥256 | - | - | - | - | 0.0 | 100 |
Non-MDR K. pneumoniae (n = 46) | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | 0.125 | 0.25 | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | 0.25 | 0.5 | 97.8 | - | 2.2 | 0.0 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | 0.5 | 64 | 87.0 | 0.0 | - | 13.0 |
Ceftazidime | ≤0.125 to ≥256 | 1 | 16 | 84.8 | - | 0.0 | 15.2 |
Meropenem | ≤0.125 to ≥256 | 0.125 | 0.25 | 100.0 | - | 0.0 | 0.0 |
Cefepime | ≤0.125 to ≥256 | 0.125 | 0.25 | 97.8 | 2.2 | - | 0.0 |
Colistin | ≤0.125 to ≥256 | 0.25 | 0.5 | - | - | 97.8 | 2.2 |
ESBL-producing K. pneumoniae (n = 6) g | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | - | - | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | - | - | 100.0 | 0.0 | - | 11.3 |
Ceftazidime | ≤0.125 to ≥256 | - | - | 33.3 | - | 0.0 | 66.7 |
Meropenem | ≤0.125 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Cefepime | ≤0.125 to ≥256 | - | - | 33.3 | 16.7 | - | 50.0 |
Colistin | ≤0.125 to ≥256 | - | - | - | - | 100.0 | 0.0 |
P. aeruginosa (n = 35) | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | 1.5 | 3.0 | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | 0.5 | 2.0 | 94.2 | - | 2.9 | 2.9 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | 16 | 256 | 62.9 | - | 8.6 | 28.5 |
Ceftazidime | ≤0.125 to ≥256 | 2 | 64 | 80.0 | - | 0.0 | 20.0 |
Meropenem | ≤0.125 to ≥256 | 2 | 64 | 65.7 | - | 8.6 | 25.7 |
Cefepime | ≤0.125 to ≥256 | 4 | 16 | 85.7 | - | 5.7 | 8.6 |
Colistin | ≤0.125 to ≥256 | 1 | 4 | - | - | 88.6 | 11.4 |
Enterobacter spp. (n = 9) g | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | - | - | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | - | - | 88.9 | 0.0 | - | 11.1 |
Ceftazidime | ≤0.125 to ≥256 | - | - | 88.9 | - | 0.0 | 11.1 |
Meropenem | ≤0.125 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Cefepime | ≤0.125 to ≥256 | - | - | 100.0 | 0.0 | - | 0.0 |
Colistin | ≤0.125 to ≥256 | - | - | - | - | 66.7 | 33.3 |
Non-MDR P. mirabilis, Proteus spp. (n = 11) | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | 0.094 | 0.125 | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | 0.75 | 1.5 | 90.9 | - | 0.0 | 9.1 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | 0.5 | 64 | 81.8 | 0.0 | - | 18.2 |
Ceftazidime | ≤0.125 to ≥256 | 0.125 | 16 | 81.8 | - | 0.0 | 18.2 |
Meropenem | ≤0.125 to ≥256 | 0.25 | 2 | 72.7 | - | 18.2 | 9.1 |
Cefepime | ≤0.125 to ≥256 | 0.125 | 1 | 90.9 | 12.5 | - | 9.1 |
Colistin | ≤0.125 to ≥256 | 256 | ≥256 | - | - | 9.1 | 90.9 |
ESBL-producing P. mirabilis, Proteus spp. (n = 5) g | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | - | - | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | - | - | 100.0 | 0.0 | - | 0.0 |
Ceftazidime | ≤0.125 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Meropenem | ≤0.125 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Cefepime | ≤0.125 to ≥256 | - | - | 40.0 | 40.0 | - | 20.0 |
Colistin | ≤0.125 to ≥256 | - | - | - | - | 0.0 | 100.0 |
Citrobacter spp. (n = 12) | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | 0.125 | 0.5 | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | 0.25 | 1.5 | 100.0 | - | 0.0 | 0.0 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | 2 | 16 | 83.4 | 8.3 | - | 8.3 |
Ceftazidime | ≤0.125 to ≥256 | 0.125 | 64 | 83.3 | - | 0.0 | 16.7 |
Meropenem | ≤0.125 to ≥256 | 0.125 | 0.5 | 100.0 | - | 0.0 | 0.0 |
Cefepime | ≤0.125 to ≥256 | 0.125 | 0.5 | 100.0 | 0.0 | - | 0.0 |
Colistin | ≤0.125 to ≥256 | 0.125 | 1 | - | - | 91.7 | 8.3 |
A. baumannii (n = 13) | |||||||
Ceftazidime-avibactam e | ≤0.016 to ≥256 | 2 | 4 | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam e | ≤0.016 to ≥256 | ≤0.016 | 4 | 61.5 | - | 38.5 | 0.0 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | 0.25 | 256 | 69.2 | - | 0.0 | 30.8 |
Ceftazidime | ≤0.125 to ≥256 | 2 | 16 | 84.6 | - | 7.7 | 7.7 |
Meropenem | ≤0.125 to ≥256 | 0.5 | 64 | 69.2 | - | 0.0 | 30.8 |
Cefepime | ≤0.125 to ≥256 | 1 | 256 | 69.2 | - | 7.7 | 23.1 |
Colistin | ≤0.125 to ≥256 | 0.25 | 0.5 | - | - | 100.0 | 0.0 |
S. maltophilia (n = 14) | |||||||
Ceftazidime-avibactam e | ≤0.016 to ≥256 | 24 | ≥256 | 28.6 | - | - | 71.4 |
Ceftolozane-tazobactam e | ≤0.016 to ≥256 | 96 | ≥256 | 14.3 | - | 21.4 | 64.3 |
Piperacillin-tazobactam f | ≤0.125 to ≥256 | ≥256 | ≥256 | 0.0 | - | 7.1 | 92.9 |
Ceftazidime | ≤0.125 to ≥256 | 32 | ≥256 | 21.4 | - | 14.3 | 64.3 |
Meropenem f | ≤0.125 to ≥256 | ≥256 | ≥256 | 0.0 | - | 0.0 | 100.0 |
Cefepime f | ≤0.125 to ≥256 | 64 | 256 | 0.0 | - | 21.4 | 78.6 |
Colistin e | ≤0.125 to ≥256 | 16 | 64 | - | - | 21.4 | 78.6 |
M. morganii (n = 7) g | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | - | - | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | - | - | 100.0 | 0.0 | - | 0.0 |
Ceftazidime | ≤0.125 to ≥256 | - | - | 71.4 | - | 28.6 | 0.0 |
Meropenem | ≤0.125 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Cefepime | ≤0.125 to ≥256 | - | - | 85.7 | 14.3 | - | 0.0 |
Colistin | ≤0.125 to ≥256 | - | - | - | - | 14.3 | 85.7 |
P. stuartii (n = 1) g | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | - | - | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | - | - | 100.0 | 0.0 | - | 0.0 |
Ceftazidime | ≤0.125 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Meropenem | ≤0.125 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Cefepime | ≤0.125 to ≥256 | - | - | 100.0 | 0.0 | - | 0.0 |
Colistin | ≤0.125 to ≥256 | - | - | - | - | 0.0 | 100.0 |
Serratia spp. (n = 2) g | |||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | - | - | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | - | - | 100.0 | 0.0 | - | 0.0 |
Ceftazidime | ≤0.125 to ≥256 | - | - | 50.0 | - | 0.0 | 50.0 |
Meropenem | ≤0.125 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Cefepime | ≤0.125 to ≥256 | - | - | 100.0 | 0.0 | - | 0.0 |
Colistin | ≤0.125 to ≥256 | - | - | - | - | 0.0 | 100.0 |
Aeromonas spp. (n = 2) g | |||||||
Ceftazidime-avibactam e | ≤0.016 to ≥256 | - | - | 100.0 | - | - | 0.0 |
Ceftolozane-tazobactam e | ≤0.016 to ≥256 | - | - | 50.0 | - | 50.0 | 0.0 |
Piperacillin-tazobactam | ≤0.125 to ≥256 | - | - | 50.0 | - | 0.0 | 50.0 |
Ceftazidime | ≤0.125 to ≥256 | - | - | 50.0 | - | 0.0 | 50.0 |
Meropenem | ≤0.125 to ≥256 | - | - | 50.0 | - | 0.0 | 50.0 |
Cefepime | ≤0.125 to ≥256 | - | - | 100.0 | - | 0.0 | 0.0 |
Colistin e | ≤0.125 to ≥256 | - | - | - | - | 100.0 | 0.0 |
Antimicrobial Agent a | MIC (mg/L) | Susceptibility c (%) | ||||
---|---|---|---|---|---|---|
Range | MIC50 b | MIC90 b | S | I | R | |
ESBL-producers (n = 32) | ||||||
K. pneumoniae (n = 32) | ||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | 0.19 | 0.5 | 100.0 | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | 0.38 | 0.75 | 100.0 | 0.0 | 0.0 |
CPE (n = 101) | ||||||
E. coli (n = 50) | ||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | ≥256 | ≥256 | 12.0 | - | 88.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | ≥256 | ≥256 | 10.0 | 2.0 | 88.0 |
Klebsiella spp. (n = 38) | ||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | 0.5 | ≥256 | 84.2 | - | 15.8 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | 12 | ≥256 | 42.1 | 0.0 | 57.9 |
Citrobacter spp. (n = 6) d | ||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | - | - | 50.0 | - | 50.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | - | - | 50.0 | 0.0 | 50.0 |
Enterobacter spp. (n = 7) d | ||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | - | - | 28.6 | - | 71.4 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | - | - | 28.6 | 0.0 | 71.4 |
Antimicrobial Agent a | MIC (mg/L) | Susceptibility c (%) | ||||
---|---|---|---|---|---|---|
Range | MIC50 b | MIC90 b | S | I | R | |
NDM-positive (n = 55) | ||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | ≥256 | ≥256 | 0.0 | - | 100.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | ≥256 | ≥256 | 0.0 | 0.0 | 100.0 |
OXA-positive (n = 34) | ||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | 0.25 | 0.75 | 97.1 | - | 2.9 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | 1.5 | 24 | 76.5 | 2.9 | 20.6 |
NDM+OXA-positive (n = 2) d | ||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | - | - | 0.0 | - | 100.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | - | - | 0.0 | 0.0 | 100.0 |
KPC-positive (n = 10) | ||||||
Ceftazidime-avibactam | ≤0.016 to ≥256 | 1 | 1.5 | 100.0 | - | 0.0 |
Ceftolozane-tazobactam | ≤0.016 to ≥256 | 48 | 64 | 0.0 | 0.0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, J.L.L.; Chan, E.; Li, T.T.; Kwan, T.Y.; Chan, K.F.; Li, W.H.; Tang, V.W.K.; Yeung, M.L.; Lau, S.K.P.; Woo, P.C.Y. Antibiotic Susceptibility of Aerobic and Facultative Anaerobic Gram-Negative Rods in Hong Kong and Implications on Usefulness of Ceftazidime-Avibactam and Ceftolozane-Tazobactam. Antibiotics 2024, 13, 802. https://doi.org/10.3390/antibiotics13090802
Teng JLL, Chan E, Li TT, Kwan TY, Chan KF, Li WH, Tang VWK, Yeung ML, Lau SKP, Woo PCY. Antibiotic Susceptibility of Aerobic and Facultative Anaerobic Gram-Negative Rods in Hong Kong and Implications on Usefulness of Ceftazidime-Avibactam and Ceftolozane-Tazobactam. Antibiotics. 2024; 13(9):802. https://doi.org/10.3390/antibiotics13090802
Chicago/Turabian StyleTeng, Jade L. L., Elaine Chan, Tsz Tuen Li, Tsz Ying Kwan, Ka Fai Chan, Wing Ho Li, Viki W. K. Tang, Man Lung Yeung, Susanna K. P. Lau, and Patrick C. Y. Woo. 2024. "Antibiotic Susceptibility of Aerobic and Facultative Anaerobic Gram-Negative Rods in Hong Kong and Implications on Usefulness of Ceftazidime-Avibactam and Ceftolozane-Tazobactam" Antibiotics 13, no. 9: 802. https://doi.org/10.3390/antibiotics13090802
APA StyleTeng, J. L. L., Chan, E., Li, T. T., Kwan, T. Y., Chan, K. F., Li, W. H., Tang, V. W. K., Yeung, M. L., Lau, S. K. P., & Woo, P. C. Y. (2024). Antibiotic Susceptibility of Aerobic and Facultative Anaerobic Gram-Negative Rods in Hong Kong and Implications on Usefulness of Ceftazidime-Avibactam and Ceftolozane-Tazobactam. Antibiotics, 13(9), 802. https://doi.org/10.3390/antibiotics13090802