Risk Factors Associated with Antibiotic Exposure Variability in Critically Ill Patients: A Systematic Review
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Hope, W.W.; Roberts, J.A. Applying Pharmacokinetic/Pharmacodynamic Principles in Critically Ill Patients: Optimizing Efficacy and Reducing Resistance Development. Semin. Respir. Crit. Care Med. 2015, 36, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Dhaese, S.; Van Vooren, S.; Boelens, J.; De Waele, J. Therapeutic drug monitoring of β-lactam antibiotics in the ICU. Expert Rev. Anti-infective Ther. 2020, 18, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Blasco, A.C.; Alfaro, L.A.; Reinoso, J.C.; Mestre, M.J.G.; Rodríguez-Gascón, A. Análisis Farmacocinético-Farmacodinámico en Microbiología: Herramienta para Evaluar el Tratamiento Antimicrobiano Enfermedades Infecciosas y Microbiologia Clinica; Elsevier Doyma: Amsterdam, The Netherlands, 2015; Volume 33, pp. 48–57. [Google Scholar]
- Rizk, M.L.; Bhavnani, S.M.; Drusano, G.; Dane, A.; Eakin, A.E.; Guina, T.; Jang, S.H.; Tomayko, J.F.; Wang, J.; Zhuang, L.; et al. Considerations for Dose Selection and Clinical Pharmacokinetics/Pharmacodynamics for the Development of Antibacterial Agents. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- Scaglione, F.; Paraboni, L. Influence of pharmacokinetics/pharmacodynamics of antibacterials in their dosing regimen selection. Expert Rev. Anti-infective Ther. 2006, 4, 479–490. [Google Scholar] [CrossRef]
- Ambrose, P.G.; Bhavnani, S.M.; Rubino, C.M.; Louie, A.; Gumbo, T.; Forrest, A.; Drusano, G.L. Antimicrobial Resistance: Pharmacokinetics-Pharmacodynamics of Antimicrobial Therapy: It’s Not Just for Mice Anymore. Clin. Infect. Dis. 2007, 44, 79–86. [Google Scholar] [CrossRef]
- Scharf, C.; Liebchen, U.; Paal, M.; Taubert, M.; Vogeser, M.; Irlbeck, M.; Zoller, M.; Schroeder, I. The higher the better? Defining the optimal beta-lactam target for critically ill patients to reach infection resolution and improve outcome. J. Intensive Care 2020, 8, 86. [Google Scholar] [CrossRef]
- Tängdén, T.; Martín, V.R.; Felton, T.W.; Nielsen, E.I.; Marchand, S.; Brüggemann, R.J.; Bulitta, J.B.; Bassetti, M.; Theuretzbacher, U.; Tsuji, B.T.; et al. The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensive Care Med. 2017, 43, 1021–1032. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.-H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A Position Paper#. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the treatment with be-ta-lactam antibiotics in critically ill patients—Guidelines from the French Society of Pharmacology and Therapeutics (Société Fran-çaise de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation—SFAR). Crit. Care 2019, 23, 1–20. [Google Scholar]
- Stašek, J.; Keller, F.; Kočí, V.; Klučka, J.; Klabusayová, E.; Wiewiorka, O.; Strašilová, Z.; Beňovská, M.; Škardová, M.; Maláska, J. Update on Therapeutic Drug Monitoring of Beta-Lactam Antibiotics in Critically Ill Patients—A Narrative Review. Antibiotics 2023, 12, 568. [Google Scholar] [CrossRef]
- Lin, B.; Hu, Y.; Xu, P.; Xu, T.; Chen, C.; He, L.; Zhou, M.; Chen, Z.; Zhang, C.; Yu, X.; et al. Expert consensus statement on therapeutic drug monitoring and individuali-zation of linezolid. Front. Public Health 2022, 10, 967311. [Google Scholar] [CrossRef]
- Wong, G.; Taccone, F.; Villois, P.; Scheetz, M.H.; Rhodes, N.J.; Briscoe, S.; McWhinney, B.; Nunez-Nunez, M.; Ungerer, J.; Lipman, J.; et al. β-Lactam pharmacodynamics in Gram-negative bloodstream infections in the critically ill. J. Antimicrob. Chemother. 2019, 75, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Pea, F.; Viale, P.; Furlanut, M. Antimicrobial Therapy in Critically Ill Patients A Review of Pathophysiological Conditions Responsible for Altered Disposition and Pharmacokinetic Variability. Clin. Pharmacokinet. 2005, 44, 1009–1034. [Google Scholar] [CrossRef] [PubMed]
- Scaglione, F.; Paraboni, L. Pharmacokinetics/pharmacodynamics of antibacterials in the Intensive Care Unit: Setting appropriate dosing regimens. Int. J. Antimicrob. Agents 2008, 32, 294–301.e7. [Google Scholar] [CrossRef]
- Veiga, R.P.; Paiva, J.-A. Pharmacokinetics–pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit. Care 2018, 22, 233. [Google Scholar] [CrossRef] [PubMed]
- Ulldemolins, M.; Nuvials, X.; Palomar, M.; Masclans, J.R.; Rello, J. Appropriateness is Critical. Crit. Care Clin. 2011, 27, 35–51. [Google Scholar] [CrossRef]
- Blot, S.I.; Pea, F.; Lipman, J. The effect of pathophysiology on pharmacokinetics in the critically ill patient — Concepts appraised by the example of antimicrobial agents. Adv. Drug Deliv. Rev. 2014, 77, 3–11. [Google Scholar] [CrossRef]
- Cotta, M.O.; Roberts, J.A.; Lipman, J. Antibiotic Dose Optimization in Critically Ill Patients. Med. Intensive 2015, 39, 563–572. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.-H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Roberts, J.A.; Rello, J.; Paterson, D.L.; Lipman, J. The Effects of Hypoalbuminaemia on Optimizing Antibacterial Dosing in Critically Ill Patients. Clin. Pharmacokinet. 2011, 50, 99–110. [Google Scholar] [CrossRef]
- Contejean, A.; Maillard, A.; Canouï, E.; Kernéis, S.; Fantin, B.; Bouscary, D.; Parize, P.; Garcia-Vidal, C.; Charlier, C. Advances in antibacterial treatment of adults with high-risk febrile neutropenia. J. Antimicrob. Chemother. 2023, 78, 2109–2120. [Google Scholar] [CrossRef] [PubMed]
- Alobaid, A.S.; Hites, M.; Lipman, J.; Taccone, F.S.; Roberts, J.A. Effect of obesity on the pharmacokinetics of antimicrobials in critically ill patients: A structured review. Int. J. Antimicrob. Agents 2016, 47, 259–268. [Google Scholar] [CrossRef]
- Miglis, C.; Rhodes, N.J.; Kuti, J.L.; Nicolau, D.P.; Van Wart, S.A.; Scheetz, M.H. Defining the impact of severity of illness on time above the MIC threshold for cefepime in Gram-negative bacteraemia: A ‘Goldilocks’ window. Int. J. Antimicrob. Agents 2017, 50, 487–490. [Google Scholar] [CrossRef]
- Ewoldt, T.M.; Abdulla, A.; Hunfeld, N.; Li, L.; Smeets, T.J.; Gommers, D.; Koch, B.C.; Endeman, H. The impact of sepsis on hepatic drug metabolism in critically ill patients: A narrative review. Expert Opin. Drug Metab. Toxicol. 2022, 18, 413–421. [Google Scholar] [CrossRef]
- Pistolesi, V.; Morabito, S.; Mario, F.; Di Regolisti, G.; Cantarelli, C.; Fiaccadori, E. A Guide to Understanding Antimicrobial Drug Dosing in Critically Ill Patients on Renal Replacement Therapy [Internet]. 2019. Available online: http://aac.asm.org/ (accessed on 18 July 2024).
- Li, Z.; Bai, J.; Wen, A.; Shen, S.; Duan, M.; Li, X. Pharmacokinetic and Pharmacodynamic Analysis of Critically Ill Patients Under-going Continuous Renal Replacement Therapy with Imipenem. Clin. Ther. 2020, 42, 1564–1577.e8. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Peluso, L.; Taccone, F.S.; Hites, M. The impact of continuous renal replacement therapy on antibiotic pharmacokinetics in critically ill patients. Expert Opin. Drug Metab. Toxicol. 2021, 17, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Pea, F. Antimicrobial Dose Reduction in Continuous Renal Replacement Therapy: Myth or Real Need? A Practical Ap-proach for Guiding Dose Optimization of Novel Antibiotics. Clin. Pharmacokinet. 2021, 60, 1271–1289. [Google Scholar]
- Jang, S.M.; Lewis, S.J.; Rhie, S.J. Optimal antipseudomonal β-lactam drug dosing recommendations in critically-ill Asian patients receiving CRRT. J. Crit. Care 2022, 72, 154172. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, Z.; Sun, L.; Zhang, X.; Hou, G.; Han, Q.; Li, X.; Liu, G.; Gao, Y.; Ye, M.; et al. Pharmacokinetics and Pharmacodynamics of Linezolid in Patients With Sepsis Receiving Continuous Venovenous Hemofiltration and Extended Daily Hemofiltration. J. Infect. Dis. 2020, 221, S279–S287. [Google Scholar] [CrossRef]
- Wong, G.; Briscoe, S.; McWhinney, B.; Ally, M.; Ungerer, J.; Lipman, J.; Roberts, J.A. Therapeutic drug monitoring of beta-lactam antibiotics in the critically ill: Direct measurement of unbound drug concentrations to achieve appropriate drug exposures. J. Antimicrob. Chemother. 2018, 73, 3087–3094. [Google Scholar] [CrossRef] [PubMed]
- Taccone, F.S.; Laterre, P.-F.; Dugernier, T.; Spapen, H.; Delattre, I.; Witebolle, X.; De Backer, D.; Layeux, B.; Wallemacq, P.; Vincent, J.-L.; et al. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit. Care 2010, 14, R126. [Google Scholar] [CrossRef]
- Luyt, C.-E.; Bréchot, N.; Trouillet, J.-L.; Chastre, J. Antibiotic stewardship in the intensive care unit. Crit. Care 2014, 18, 480. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, A.; Dijkstra, A.; Hunfeld, N.G.M.; Endeman, H.; Bahmany, S.; Ewoldt, T.M.J.; Muller, A.E.; van Gelder, T.; Gommers, D.; Koch, B.C.P. Failure of target attainment of beta-lactam antibiotics in critically ill patients and associated risk factors: A two-center prospective study (EXPAT). Crit. Care 2020, 24, 558. [Google Scholar] [CrossRef] [PubMed]
- De Waele, J.J.; Lipman, J.; Akova, M.; Bassetti, M.; Dimopoulos, G.; Kaukonen, M.; Koulenti, D.; Martin, C.; Montravers, P.; Rello, J.; et al. Risk factors for target non-attainment during empirical treatment with β-lactam antibiotics in critically ill patients. Intensive Care Med. 2014, 40, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining antibiotic levels in intensive care unit patients: Are current ß-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Charmillon, A.; Novy, E.; Agrinier, N.; Leone, M.; Kimmoun, A.; Levy, B.; Demoré, B.; Dellamonica, J.; Pulcini, C. The ANTIBIOPERF study: A nationwide cross-sectional survey about practices for β-lactam administration and therapeutic drug monitoring among critically ill patients in France. Clin. Microbiol. Infect. 2016, 22, 625–631. [Google Scholar] [CrossRef]
- Williams, P.G.; Tabah, A.; Cotta, M.O.; Sandaradura, I.; Kanji, S.; Scheetz, M.H.; Imani, S.; Elhadi, M.; Luque-Pardos, S.; Schellack, N.; et al. International survey of antibiotic dosing and monitoring in adult intensive care units. Crit. Care 2023, 27, 241. [Google Scholar] [CrossRef]
- Rao, G.G.; Konicki, R.; Cattaneo, D.; Alffenaar, J.-W.; Marriott, D.J.E.; Neely, M.; On behalf of the IATDMCT Antimicrobial Scientific Committee. Therapeutic Drug Monitoring Can Improve Linezolid Dosing Regimens in Current Clinical Practice: A Review of Linezolid Pharmacokinetics and Pharmacodynamics. Ther. Drug Monit. 2020, 42, 83–92. [Google Scholar] [CrossRef]
- De Waele, J.J.; Carrette, S.; Carlier, M.; Stove, V.; Boelens, J.; Claeys, G.; Leroux-Roels, I.; Hoste, E.; Depuydt, P.; Decruyenaere, J.; et al. Therapeutic drug monitoring-based dose optimisation of piperacillin and meropenem: A randomised controlled trial. Intensive Care Med. 2013, 40, 380–387. [Google Scholar] [CrossRef]
- Steffens, N.A.; Zimmermann, E.S.; Nichelle, S.M.; Brucker, N. Meropenem use and therapeutic drug monitoring in clinical practice: A literature review. J. Clin. Pharm. Ther. 2021, 46, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Wicha, S.G.; Märtson, A.; Nielsen, E.I.; Koch, B.C.; Friberg, L.E.; Alffenaar, J.; Minichmayr, I.K. The International Society of Anti-Infective Pharmacology (ISAP), the PK/PD study group of the European Society of Clinical Microbiology, Infectious Diseases (EPASG) From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotics. Clin. Pharmacol. Ther. 2021, 109, 928–941. [Google Scholar] [CrossRef]
- Osorio, C.; Garzón, L.; Jaimes, D.; Silva, E.; Bustos, R.-H. Impact on Antibiotic Resistance, Therapeutic Success, and Control of Side Effects in Therapeutic Drug Monitoring (TDM) of Daptomycin: A Scoping Review. Antibiotics 2021, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Russo, A.; Cassetta, M.I.; Lappa, A.; Tritapepe, L.; D'Ettorre, G.; Fallani, S.; Novelli, A.; Venditti, M. Variability of pharmacokinetic parameters in patients receiving different dosages of daptomycin: Is therapeutic drug monitoring necessary? J. Infect. Chemother. 2013, 19, 732–739. [Google Scholar] [CrossRef]
- Galar, A.; Valerio, M.; Muñoz, P.; Alcalá, L.; García-González, X.; Burillo, A.; Sanjurjo, M.; Grau, S.; Bouza, E. Systematic Therapeutic Drug Monitoring for Linezolid: Variability and Clinical Impact. Antimicrob. Agents Chemother. 2017, 61, e00687-17. [Google Scholar] [CrossRef] [PubMed]
- Galar, A.; Muñoz, P.; Valerio, M.; Cercenado, E.; García-González, X.; Burillo, A.; Sánchez-Somolinos, M.; Juárez, M.; Verde, E.; Bouza, E. Current use of daptomycin and systematic therapeutic drug monitoring: Clinical experience in a tertiary care institution. Int. J. Antimicrob. Agents 2018, 53, 40–48. [Google Scholar] [CrossRef]
- Takahashi, N.; Kondo, Y.; Kubo, K.; Egi, M.; Kano, K.-I.; Ohshima, Y.; Nakada, T.-A. Efficacy of therapeutic drug monitoring-based antibiotic regimen in critically ill patients: A systematic review and meta-analysis of randomized controlled trials. J. Intensive Care 2023, 11, 48. [Google Scholar] [CrossRef]
- Mangalore, R.P.; Ashok, A.; Lee, S.J.; Romero, L.; Peel, T.N.; A Udy, A.; Peleg, A.Y. Beta-Lactam Antibiotic Therapeutic Drug Monitoring in Critically Ill Patients: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2022, 75, 1848–1860. [Google Scholar] [CrossRef]
- Al-Shaer, M.H.; Rubido, E.; Cherabuddi, K.; Venugopalan, V.; Klinker, K.; Peloquin, C. Early therapeutic monitoring of β-lactams and associated therapy outcomes in critically ill patients. J. Antimicrob. Chemother. 2020, 75, 3644–3651. [Google Scholar] [CrossRef]
- Ewoldt, T.M.J.; Abdulla, A.; Rietdijk, W.J.R.; Muller, A.E.; de Winter, B.C.M.; Hunfeld, N.G.M.; Purmer, I.M.; van Vliet, P.; Wils, E.-J.; Haringman, J.; et al. Model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin in critically ill patients: A multicentre randomised clinical trial. Intensive Care Med. 2022, 48, 1760–1771. [Google Scholar] [CrossRef]
- on behalf of the TARGET Study Group; Hagel, S.; Fiedler, S.; Hohn, A.; Brinkmann, A.; Frey, O.R.; Hoyer, H.; Schlattmann, P.; Kiehntopf, M.; Roberts, J.A.; et al. Therapeutic drug monitoring-based dose optimisation of piperacillin/tazobactam to improve outcome in patients with sepsis (TARGET): A prospective, multi-centre, randomised controlled trial. Trials 2019, 20, 330. [Google Scholar] [CrossRef]
- Hansel, J.; Mannan, F.; Robey, R.; Kumarendran, M.; Bladon, S.; Mathioudakis, A.G.; Ogungbenro, K.; Dark, P.; Felton, T.W. Covariates in population pharmacokinetic studies of critically ill adults receiving β-lactam antimicrobials: A systematic review and narrative synthesis. JAC-Antimicrobial Resist. 2023, 6, dlae030. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Cojutti, P.G.; Pea, F. Impact of attaining aggressive vs. conservative PK/PD target on the clinical efficacy of beta-lactams for the treatment of Gram-negative infections in the critically ill patients: A systematic review and meta-analysis. Crit. Care 2024, 28, 123. [Google Scholar] [CrossRef] [PubMed]
- Varghese, J.M.; Roberts, J.A.; Lipman, J. Antimicrobial Pharmacokinetic and Pharmacodynamic Issues in the Critically Ill with Severe Sepsis and Septic Shock. Crit. Care Clin. 2011, 27, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Hites, M.; Taccone, F.S. Optimization of antibiotic therapy in the obese, critically ill patient. Reanim. 2015, 24, 278–294. [Google Scholar] [CrossRef]
- Pea, F.; Furlanut, M.; Negri, C.; Pavan, F.; Crapis, M.; Cristini, F.; Viale, P. Prospectively Validated Dosing Nomograms for Maximizing the Pharmacodynamics of Vancomycin Administered by Continuous Infusion in Critically Ill Patients. Antimicrob. Agents Chemother. 2009, 53, 1863–1867. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Kanji, S.; Hayes, M.; Ling, A.; Shamseer, L.; Chant, C.; Edwards, D.J.; Edwards, S.; Ensom, M.H.H.; Foster, D.R.; Hardy, B.; et al. Reporting Guidelines for Clinical Pharmacokinetic Studies: The ClinPK Statement. Clin. Pharmacokinet. 2015, 54, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, T.; Cepeda, J.A.; Shulman, R.; Aarons, L.; Nalda-Molina, R.; Tobin, C.; MacGowan, A.; Shaw, S.; Kibbler, C.; Singer, M.; et al. Pharmacokinetic studies of linezolid and teicoplanin in the critically ill. J. Antimicrob. Chemother. 2005, 55, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, O.; Kumar, V.; Katterwe, D.; Majcher-Peszynska, J.; Drewelow, B.; Derendorf, H.; Welte, T. Ertapenem in critically ill patients with early-onset ventilator-associated pneumonia: Pharmacokinetics with special consideration of free-drug concentration. J. Antimicrob. Chemother. 2006, 59, 277–284. [Google Scholar] [CrossRef]
- Roos, J.F.; Lipman, J.; Kirkpatrick, C.M.J. Population pharmacokinetics and pharmacodynamics of cefpirome in critically ill patients against Gram-negative bacteria. Intensive Care Med. 2007, 33, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Field, J.; Visser, A.; Whitbread, R.; Tallot, M.; Lipman, J.; Kirkpatrick, C.M.J. Using Population Pharmacokinetics To Determine Gentamicin Dosing during Extended Daily Diafiltration in Critically Ill Patients with Acute Kidney Injury. Antimicrob. Agents Chemother. 2010, 54, 3635–3640. [Google Scholar] [CrossRef]
- Asin-Prieto, E.; Rodriguez-Gascon, A.; Troconiz, I.F.; Soraluce, A.; Maynar, J.; Sanchez-Izquierdo, J.A.; Isla, A. Population pharmacokinetics of piperacillin and tazobactam in critically ill patients undergoing continuous renal replacement therapy: Application to pharmacokinetic/pharmacodynamic analysis. J. Antimicrob. Chemother. 2013, 69, 180–189. [Google Scholar] [CrossRef]
- Escobar, L.; Andresen, M.; Downey, P.; Gai, M.N.; Regueira, T.; Bórquez, T.; Lipman, J.; Roberts, J.A. Population pharmacokinetics and dose simulation of vancomycin in critically ill patients during high-volume haemofiltration. Int. J. Antimicrob. Agents 2014, 44, 163–167. [Google Scholar] [CrossRef]
- Couffignal, C.; Pajot, O.; Laouénan, C.; Burdet, C.; Foucrier, A.; Wolff, M.; Armand-Lefevre, L.; Mentré, F.; Massias, L. Population pharmacokinetics of imipenem in critically ill patients with suspected ventilator-associated pneumonia and evaluation of dosage regimens. Br. J. Clin. Pharmacol. 2014, 78, 1022–1034. [Google Scholar] [CrossRef] [PubMed]
- Carlier, M.; Noe, M.; Roberts, J.A.; Stove, V.; Verstraete, A.G.; Lipman, J.; De Waele, J.J. Population pharmacokinetics and dosing simulations of cefuroxime in critically ill patients: Non-standard dosing approaches are required to achieve therapeutic exposures. J. Antimicrob. Chemother. 2014, 69, 2797–2803. [Google Scholar] [CrossRef] [PubMed]
- Zoller, M.; Maier, B.; Hornuss, C.; Neugebauer, C.; Döbbeler, G.; Nagel, D.; Holdt, L.M.; Bruegel, M.; Weig, T.; Grabein, B.; et al. Variability of linezolid concentrations after standard dosing in critically ill patients: A prospective observational study. Crit. Care 2014, 18, R148. [Google Scholar] [CrossRef]
- Luque, S.; Grau, S.; Alvarez-Lerma, F.; Ferrández, O.; Campillo, N.; Horcajada, J.; Basas, M.; Lipman, J.; Roberts, J. Plasma and cerebrospinal fluid concentrations of linezolid in neurosurgical critically ill patients with proven or suspected central nervous system infections. Int. J. Antimicrob. Agents 2014, 44, 409–415. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Soy, D.; Llaurado-Serra, M.; Vaquer, S.; Castro, P.; Rodríguez, A.H.; Pontes, C.; Calvo, G.; Torres, A.; Martín-Loeches, I. Meropenem Population Pharmacokinetics in Critically Ill Patients with Septic Shock and Continuous Renal Replacement Therapy: Influence of Residual Diuresis on Dose Requirements. Antimicrob. Agents Chemother. 2015, 59, 5520–5528. [Google Scholar] [CrossRef]
- Kees, M.G.; Minichmayr, I.K.; Moritz, S.; Beck, S.; Wicha, S.G.; Kees, F.; Kloft, C.; Steinke, T. Population pharmacokinetics of meropenem during continuous infusion in surgical ICU patients. J. Clin. Pharmacol. 2015, 56, 307–315. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Rahman, A.N.A.; Mat-Nor, M.-B.; Sulaiman, H.; Wallis, S.C.; Lipman, J.; Roberts, J.A.; Staatz, C.E. Population Pharmacokinetics of Doripenem in Critically Ill Patients with Sepsis in a Malaysian Intensive Care Unit. Antimicrob. Agents Chemother. 2016, 60, 206–214. [Google Scholar] [CrossRef]
- Roger, C.; Muller, L.; Wallis, S.C.; Louart, B.; Saissi, G.; Lipman, J.; Lefrant, J.Y.; Roberts, J.A. Population pharmacokinetics of linezolid in critically ill patients on renal replacement therapy: Comparison of equal doses in continuous venovenous haemofiltration and continuous venovenous haemodiafiltration. J. Antimicrob. Chemother. 2015, 71, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Cotta, M.O.; Cojutti, P.; Lugano, M.; Della Rocca, G.; Pea, F. Does Critical Illness Change Levofloxacin Pharmacokinetics? Antimicrob. Agents Chemother. 2016, 60, 1459–1463. [Google Scholar] [CrossRef] [PubMed]
- Ulldemolins, M.; Martín-Loeches, I.; Llauradó-Serra, M.; Fernández, J.; Vaquer, S.; Rodríguez, A.; Pontes, C.; Calvo, G.; Torres, A.; Soy, D. Piperacillin population pharmacokinetics in critically ill patients with multiple organ dysfunction syndrome receiving continuous venovenous haemodiafiltration: Effect of type of dialysis membrane on dosing requirements. J. Antimicrob. Chemother. 2016, 71, 1651–1659. [Google Scholar] [CrossRef]
- Roger, C.; Wallis, S.C.; Louart, B.; Lefrant, J.-Y.; Lipman, J.; Muller, L.; Roberts, J.A. Comparison of equal doses of continuous venovenous haemofiltration and haemodiafiltration on ciprofloxacin population pharmacokinetics in critically ill patients. J. Antimicrob. Chemother. 2016, 71, 1643–1650. [Google Scholar] [CrossRef]
- Alobaid, A.S.; Wallis, S.C.; Jarrett, P.; Starr, T.; Stuart, J.; Lassig-Smith, M.; Mejia, J.L.O.; Roberts, M.S.; Lipman, J.; Roberts, J.A. Effect of Obesity on the Population Pharmacokinetics of Meropenem in Critically Ill Patients. Antimicrob. Agents Chemother. 2016, 60, 4577–4584. [Google Scholar] [CrossRef] [PubMed]
- Taubert, M.; Zoller, M.; Maier, B.; Frechen, S.; Scharf, C.; Holdt, L.-M.; Frey, L.; Vogeser, M.; Fuhr, U.; Zander, J. Predictors of Inadequate Linezolid Concentrations after Standard Dosing in Critically Ill Patients. Antimicrob. Agents Chemother. 2016, 60, 5254–5261. [Google Scholar] [CrossRef]
- Tsai, D.; Stewart, P.; Goud, R.; Gourley, S.; Hewagama, S.; Krishnaswamy, S.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Optimising meropenem dosing in critically ill Australian Indigenous patients with severe sepsis. Int. J. Antimicrob. Agents 2016, 48, 542–546. [Google Scholar] [CrossRef]
- Blassmann, U.; Roehr, A.C.; Frey, O.R.; Vetter-Kerkhoff, C.; Thon, N.; Hope, W.; Briegel, J.; Huge, V. Cerebrospinal fluid penetration of meropenem in neurocritical care patients with proven or suspected ventriculitis: A prospective observational study. Crit. Care 2016, 20, 343. [Google Scholar] [CrossRef]
- Rahbar, A.J.; Lodise, T.P.; Abraham, P.; Lockwood, A.; Pai, M.P.; Patka, J.; Rabinovich, M.; Curzio, K.; Chester, K.; Williams, B.; et al. Pharmacokinetic and Pharmacodynamic Evaluation of Doripenem in Critically Ill Trauma Patients with Sepsis. Surg. Infect. 2016, 17, 675–682. [Google Scholar] [CrossRef]
- Naik, B.I.; Roger, C.; Ikeda, K.; Todorovic, M.S.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Comparative total and unbound pharmacokinetics of cefazolin administered by bolus versus continuous infusion in patients undergoing major surgery: A randomized controlled trial. Br. J. Anaesth. 2017, 118, 876–882. [Google Scholar] [CrossRef]
- Xie, J.; Roberts, J.A.; Alobaid, A.S.; Roger, C.; Wang, Y.; Yang, Q.; Sun, J.; Dong, H.; Wang, X.; Xing, J.; et al. Population Pharmacokinetics of Tigecycline in Critically Ill Patients with Severe Infections. Antimicrob. Agents Chemother. 2017, 61, e00345-17. [Google Scholar] [CrossRef] [PubMed]
- Wicha, S.G.; Frey, O.R.; Roehr, A.C.; Pratschke, J.; Stockmann, M.; Alraish, R.; Wuensch, T.; Kaffarnik, M. Linezolid in liver failure: Exploring the value of the maximal liver function capacity (LiMAx) test in a pharmacokinetic pilot study. Int. J. Antimicrob. Agents 2017, 50, 557–563. [Google Scholar] [CrossRef]
- Sime, F.B.; Hahn, U.; Warner, M.S.; Tiong, I.S.; Roberts, M.S.; Lipman, J.; Peake, S.L.; Roberts, J.A. Using Population Pharmacokinetic Modeling and Monte Carlo Simulations To Determine whether Standard Doses of Piperacillin in Piperacillin-Tazobactam Regimens Are Adequate for the Management of Febrile Neutropenia. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Sjövall, F.; Alobaid, A.S.; Wallis, S.C.; Perner, A.; Lipman, J.; A Roberts, J. Maximally effective dosing regimens of meropenem in patients with septic shock. J. Antimicrob. Chemother. 2017, 73, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Moor, A.B.-D.; Rypulak, E.; Potręć, B.; Piwowarczyk, P.; Borys, M.; Sysiak, J.; Onichimowski, D.; Raszewski, G.; Czuczwar, M.; Wiczling, P. Population Pharmacokinetics of High-Dose Tigecycline in Patients with Sepsis or Septic Shock. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef]
- Braune, S.; König, C.; Roberts, J.A.; Nierhaus, A.; Steinmetz, O.; Baehr, M.; Kluge, S.; Langebrake, C. Pharmacokinetics of meropenem in septic patients on sustained low-efficiency dialysis: A population pharmacokinetic study. Crit. Care 2018, 22, 25. [Google Scholar] [CrossRef]
- Bos, J.C.; Prins, J.M.; Mistício, M.C.; Nunguiane, G.; Lang, C.N.; Beirão, J.C.; A A Mathôt, R.; van Hest, R.M. Pharmacokinetics and pharmacodynamic target attainment of ceftriaxone in adult severely ill sub-Saharan African patients: A population pharmacokinetic modelling study. J. Antimicrob. Chemother. 2018, 73, 1620–1629. [Google Scholar] [CrossRef]
- Hanberg, P.; Öbrink-Hansen, K.; Thorsted, A.; Bue, M.; Tøttrup, M.; Friberg, L.E.; Hardlei, T.F.; Søballe, K.; Gjedsted, J. Population Pharmacokinetics of Meropenem in Plasma and Subcutis from Patients on Extracorporeal Membrane Oxygenation Treatment. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef]
- Soraluce, A.; Asín-Prieto, E.; Rodríguez-Gascón, A.; Barrasa, H.; Maynar, J.; Carcelero, E.; Soy, D.; Isla, A. Population pharmacokinetics of daptomycin in critically ill patients. Int. J. Antimicrob. Agents 2018, 52, 158–165. [Google Scholar] [CrossRef]
- Kanji, S.; Roberts, J.A.; Xie, J.; Alobaid, A.; Zelenitsky, S.; Hiremath, S.; Zhang, G.; Watpool, I.; Porteous, R.; Patel, R. Piperacillin Population Pharmacokinetics in Critically Ill Adults During Sustained Low-Efficiency Dialysis. Ann. Pharmacother. 2018, 52, 965–973. [Google Scholar] [CrossRef]
- Fournier, A.; Goutelle, S.; Que, Y.-A.; Eggimann, P.; Pantet, O.; Sadeghipour, F.; Voirol, P.; Csajka, C. Population Pharmacokinetic Study of Amoxicillin-Treated Burn Patients Hospitalized at a Swiss Tertiary-Care Center. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef]
- Tsai, D.; Stewart, P.C.; Hewagama, S.; Krishnaswamy, S.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Optimised dosing of vancomycin in critically ill Indigenous Australian patients with severe sepsis. Anaesth. Intensive Care 2018, 46, 374–380. [Google Scholar] [CrossRef]
- Turner, R.B.; Kojiro, K.; Won, R.; Chang, E.; Chan, D.; Elbarbry, F. Prospective evaluation of vancomycin pharmacokinetics in a heterogeneous critically ill population. Diagn. Microbiol. Infect. Dis. 2018, 92, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Stein, G.E.; Smith, C.L.; Scharmen, A.; Kidd, J.M.; Cooper, C.; Kuti, J.; Mitra, S.; Nicolau, D.P.; Havlichek, D.H. Pharmacokinetic and Pharmacodynamic Analysis of Ceftazidime/Avibactam in Critically Ill Patients. Surg. Infect. 2019, 20, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Leuppi-Taegtmeyer, A.B.; Decosterd, L.; Osthoff, M.; Mueller, N.J.; Buclin, T.; Corti, N. Multicenter Population Pharmacokinetic Study of Colistimethate Sodium and Colistin Dosed as in Normal Renal Function in Patients on Continuous Renal Replacement Therapy. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [PubMed]
- Sukarnjanaset, W.; Jaruratanasirikul, S.; Wattanavijitkul, T. Population pharmacokinetics and pharmacodynamics of piperacillin in critically ill patients during the early phase of sepsis. J. Pharmacokinet. Pharmacodyn. 2019, 46, 251–261. [Google Scholar] [CrossRef]
- Zamora, A.P.; Roig, R.J.; Badosa, E.L.; Riera, J.S.; Fernández, X.L.P.; Campos, P.C.; Bonin, R.R.; Ramos, P.A.; Quintano, F.T.; Martinez, E.S.; et al. Optimized meropenem dosage regimens using a pharmacokinetic/pharmacodynamic population approach in patients undergoing continuous venovenous haemodiafiltration with high-adsorbent membrane. J. Antimicrob. Chemother. 2019, 74, 2979–2983. [Google Scholar] [CrossRef] [PubMed]
- Sime, F.B.; Lassig-Smith, M.; Starr, T.; Stuart, J.; Pandey, S.; Parker, S.L.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Population Pharmacokinetics of Unbound Ceftolozane and Tazobactam in Critically Ill Patients without Renal Dysfunction. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- Kanji, S.; Roberts, J.A.; Xie, J.; Zelenitsky, S.; Hiremath, S.; Zhang, G.; Watpool, I.; Porteous, R.; Patel, R. Vancomycin Population Pharmacokinetics in Critically Ill Adults During Sustained Low-Efficiency Dialysis. Clin. Pharmacokinet. 2020, 59, 327–334. [Google Scholar] [CrossRef]
- Sime, F.B.; Lassig-Smith, M.; Starr, T.; Stuart, J.; Pandey, S.; Parker, S.L.; Wallis, S.C.; Lipman, J.; Roberts, J.A. A Population Pharmacokinetic Model-Guided Evaluation of Ceftolozane-Tazobactam Dosing in Critically Ill Patients Undergoing Continuous Venovenous Hemodiafiltration. Antimicrob. Agents Chemother. 2019, 64. [Google Scholar] [CrossRef]
- Kovacevic, T.; Miljkovic, B.; Kovacevic, P.; Dragic, S.; Momcicevic, D.; Avram, S.; Jovanovic, M.; Vucicevic, K. Population pharmacokinetic model of Vancomycin based on therapeutic drug monitoring data in critically ill septic patients. J. Crit. Care 2019, 55, 116–121. [Google Scholar] [CrossRef]
- Kalaria, S.N.; Gopalakrishnan, M.; Heil, E.L. A Population Pharmacokinetics and Pharmacodynamic Approach To Optimize Tazobactam Activity in Critically Ill Patients. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef] [PubMed]
- Masich, A.M.; Kalaria, S.N.; Gonzales, J.P.; Heil, E.L.; Tata, A.L.; Claeys, K.C.; Patel, D.; Gopalakrishnan, M. Vancomycin Pharmacokinetics in Obese Patients with Sepsis or Septic Shock. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 211–220. [Google Scholar] [CrossRef]
- Bue, M.; Sou, T.; Okkels, A.S.L.; Hanberg, P.; Thorsted, A.; Friberg, L.E.; Andersson, T.L.; Öbrink-Hansen, K.; Christensen, S. Population pharmacokinetics of piperacillin in plasma and subcutaneous tissue in patients on continuous renal replacement therapy. Int. J. Infect. Dis. 2020, 92, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Niibe, Y.B.; Suzuki, T.B.; Yamazaki, S.M.; Suzuki, T.; Takahashi, N.; Hattori, N.; Nakada, T.-A.; Oda, S.; Ishii, I. Population Pharmacokinetic Analysis of Meropenem in Critically Ill Patients With Acute Kidney Injury Treated With Continuous Hemodiafiltration. Ther. Drug Monit. 2020, 42, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Onichimowski, D.; Będźkowska, A.; Ziółkowski, H.; Jaroszewski, J.; Borys, M.; Czuczwar, M.; Wiczling, P. Population pharmacokinetics of standard-dose meropenem in critically ill patients on continuous renal replacement therapy: A prospective observational trial. Pharmacol. Rep. 2020, 72, 719–729. [Google Scholar] [CrossRef]
- Smit, C.; van Schip, A.M.; A van Dongen, E.P.; Brüggemann, R.J.M.; Becker, M.L.; Knibbe, C.A.J. Dose recommendations for gentamicin in the real-world obese population with varying body weight and renal (dys)function. J. Antimicrob. Chemother. 2020, 75, 3286–3292. [Google Scholar] [CrossRef]
- Blackman, A.L.; Jarugula, P.; Nicolau, D.P.; Chui, S.H.; Joshi, M.; Heil, E.L.; Gopalakrishnan, M. Evaluation of Linezolid Pharmacokinetics in Critically Ill Obese Patients with Severe Skin and Soft Tissue Infections. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Bastida, C.; Llauradó-Serra, M.; Csajka, C.; Rodríguez, A.; Badia, J.R.; Martín-Loeches, I.; Soy, D. Once-daily 1 g ceftriaxone optimizes exposure in patients with septic shock and hypoalbuminemia receiving continuous veno-venous hemodiafiltration. Eur. J. Clin. Pharmacol. 2021, 77, 1169–1180. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Yao, F.; Chen, S.; Hou, Y.; Zheng, Z.; Luo, J.; Qiu, B.; Li, Z.; Wang, Y.; et al. Pharmacokinetics of Linezolid Dose Adjustment for Creatinine Clearance in Critically Ill Patients: A Multicenter, Prospective, Open-Label, Observational Study. Drug Des. Dev. Ther. 2021, ume 15, 2129–2141. [Google Scholar] [CrossRef]
- De Winter, S.; van Hest, R.; Dreesen, E.; Annaert, P.; Wauters, J.; Meersseman, W.; Eede, N.V.D.; Desmet, S.; Verelst, S.; Vanbrabant, P.; et al. Quantification and Explanation of the Variability of First-Dose Amikacin Concentrations in Critically Ill Patients Admitted to the Emergency Department: A Population Pharmacokinetic Analysis. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 653–663. [Google Scholar] [CrossRef]
- Cheng, V.; Abdul-Aziz, M.H.; Burrows, F.; Buscher, H.; Corley, A.; Diehl, A.; Jakob, S.M.; Levkovich, B.J.; Pellegrino, V.; Que, Y.-A.; et al. Population pharmacokinetics of cefepime in critically ill patients receiving extracorporeal membrane oxygenation (an ASAP ECMO study). Int. J. Antimicrob. Agents 2021, 58, 106466. [Google Scholar] [CrossRef]
- Lan, J.; Wu, Z.; Wang, X.; Wang, Y.; Yao, F.; Zhao, B.-X.; Wang, Y.; Chen, J.; Chen, C. Population Pharmacokinetics Analysis and Dosing Simulations Of Meropenem in Critically Ill Patients with Pulmonary Infection. J. Pharm. Sci. 2022, 111, 1833–1842. [Google Scholar] [CrossRef]
- Dreesen, E.; Gijsen, M.; Elkayal, O.; Annaert, P.; Debaveye, Y.; Wauters, J.; O Karlsson, M.; Spriet, I. Ceftriaxone dosing based on the predicted probability of augmented renal clearance in critically ill patients with pneumonia. J. Antimicrob. Chemother. 2022, 77, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Meenks, S.D.; le Noble, J.L.; Foudraine, N.A.; de Vries, F.; Neef, K.N.; Janssen, P.K. Population pharmacokinetics of unbound ceftriaxone in a critically ill population. Int. J. Clin. Pharmacol. Ther. 2022, 60, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Alshaer, M.H.; Barlow, B.; Maranchick, N.; Moser, M.; Gramss, L.; Burgmann, H.; Al Jalali, V.; Wölfl-Duchek, M.; Jäger, W.; Poschner, S.; et al. Meropenem Population Pharmacokinetics and Simulations in Plasma, Cerebrospinal Fluid, and Brain Tissue. Antimicrob. Agents Chemother. 2022, 66, e0043822. [Google Scholar] [CrossRef] [PubMed]
- Kumta, N.; Heffernan, A.J.; Cotta, M.O.; Wallis, S.C.; Livermore, A.; Starr, T.; Wong, W.T.; Joynt, G.M.; Lipman, J.; Roberts, J.A. Plasma and Cerebrospinal Fluid Population Pharmacokinetics of Meropenem in Neurocritical Care Patients: A Prospective Two-Center Study. Antimicrob. Agents Chemother. 2022, 66, e0014222. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, S.B.; Ohbayashi, M.; Okada, A.; Kohyama, N.; Tamatsukuri, T.; Inoue, H.; Kato, A.; Kotani, T.; Sagara, H.; Dohi, K.; et al. Population Pharmacokinetic Model and Dosing Simulation of Meropenem Using Measured Creatinine Clearance for Patients with Sepsis. Ther. Drug Monit. 2022, 45, 392–399. [Google Scholar] [CrossRef]
- Meenks, S.D.; Punt, N.; le Noble, J.L.M.L.; Foudraine, N.A.; Neef, K.; Janssen, P.K.C. Target attainment and population pharmacokinetics of flucloxacillin in critically ill patients: A multicenter study. Crit. Care 2023, 27, 82. [Google Scholar] [CrossRef]
- Tang, T.; Li, Y.; Xu, P.; Zhong, Y.; Yang, M.; Ma, W.; Xiang, D.; Zhang, B.; Zhou, Y. Optimization of polymyxin B regimens for the treatment of carbapenem-resistant organism nosocomial pneumonia: A real-world prospective study. Crit. Care 2023, 27, 164. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, F.; Chen, S.; Ouyang, X.; Lan, J.; Wu, Z.; Wang, Y.; Chen, J.; Wang, X.; Chen, C. Optimal Teicoplanin Dosage Regimens in Critically Ill Patients: Population Pharmacokinetics and Dosing Simulations Based on Renal Function and Infection Type. Drug Des. Dev. Ther. 2023, ume 17, 2259–2271. [Google Scholar] [CrossRef]
- Barreto, E.F.; Chang, J.; Rule, A.D.; Mara, K.C.; Meade, L.A.; Paul, J.; Jannetto, P.J.; Athreya, A.P.; Scheetz, M.H.; for the BLOOM Study Group. Population pharmacokinetic model of cefepime for critically ill adults: A comparative assessment of eGFR equations. Antimicrob. Agents Chemother. 2023, 67, e0081023. [Google Scholar] [CrossRef] [PubMed]
- Facca, B.; Frame, B.; Triesenberg, S. Population Pharmacokinetics of Ceftizoxime Administered by Continuous Infusion in Clinically Ill Adult Patients. Antimicrob. Agents Chemother. 1998, 42, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Frame, B.C.; Facca, B.F.; Nicolau, D.P.; Triesenberg, S.N. Population Pharmacokinetics of Continuous Infusion Ceftazidime. Clin. Pharmacokinet. 1999, 37, 343–350. [Google Scholar] [CrossRef]
- Dailly, E.; Arnould, J.; Fraissinet, F.; Naux, E.; de la Bouralière, M.L.; Bouquié, R.; Deslandes, G.; Jolliet, P.; Le Floch, R. Pharmacokinetics of ertapenem in burns patients. Int. J. Antimicrob. Agents 2013, 42, 48–52. [Google Scholar] [CrossRef]
- Beumier, M.; Roberts, J.A.; Kabtouri, H.; Hites, M.; Cotton, F.; Wolff, F.; Lipman, J.; Jacobs, F.; Vincent, J.-L.; Taccone, F.S. A new regimen for continuous infusion of vancomycin during continuous renal replacement therapy. J. Antimicrob. Chemother. 2013, 68, 2859–2865. [Google Scholar] [CrossRef] [PubMed]
- Öbrink-Hansen, K.; Juul, R.V.; Storgaard, M.; Thomsen, M.K.; Hardlei, T.F.; Brock, B.; Kreilgaard, M.; Gjedsted, J. Population Pharmacokinetics of Piperacillin in the Early Phase of Septic Shock: Does Standard Dosing Result in Therapeutic Plasma Concentrations? Antimicrob. Agents Chemother. 2015, 59, 7018–7026. [Google Scholar] [CrossRef]
- Lin, W.-W.; Wu, W.; Jiao, Z.; Lin, R.-F.; Jiang, C.-Z.; Huang, P.-F.; Liu, Y.-W.; Wang, C.-L. Population pharmacokinetics of vancomycin in adult Chinese patients with post-craniotomy meningitis and its application in individualised dosage regimens. Eur. J. Clin. Pharmacol. 2015, 72, 29–37. [Google Scholar] [CrossRef]
- Ide, T.; Takesue, Y.; Ikawa, K.; Morikawa, N.; Ueda, T.; Takahashi, Y.; Nakajima, K.; Takeda, K.; Nishi, S. Population pharmacokinetics/pharmacodynamics of linezolid in sepsis patients with and without continuous renal replacement therapy. Int. J. Antimicrob. Agents 2018, 51, 745–751. [Google Scholar] [CrossRef]
- Kang, S.; Jang, J.Y.; Hahn, J.; Kim, D.; Lee, J.Y.; Min, K.L.; Yang, S.; Wi, J.; Chang, M.J. Dose Optimization of Cefpirome Based on Population Pharmacokinetics and Target Attainment during Extracorporeal Membrane Oxygenation. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Grensemann, J.; Busse, D.; König, C.; Roedl, K.; Jäger, W.; Jarczak, D.; Iwersen-Bergmann, S.; Manthey, C.; Kluge, S.; Kloft, C.; et al. Acute-on-chronic liver failure alters meropenem pharmacokinetics in critically ill patients with continuous hemodialysis: An observational study. Ann. Intensive Care 2020, 10, 48. [Google Scholar] [CrossRef]
- Liu, D.; Chen, W.; Wang, Q.; Li, M.; Zhang, Z.; Cui, G.; Li, P.; Zhang, X.; Ma, Y.; Zhan, Q.; et al. Influence of venovenous extracorporeal membrane oxygenation on pharmacokinetics of vancomycin in lung transplant recipients. J. Clin. Pharm. Ther. 2020, 45, 1066–1075. [Google Scholar] [CrossRef]
- Ruiz, J.; Ramirez, P.; Villarreal, E.; Gordon, M.; Sánchez, M.; Martín, M.; Castellanos-Ortega. Effect of pharmacokinetic/pharmacodynamic ratio on tigecycline clinical response and toxicity in critically ill patients with multidrug-resistant Gram-negative infections. SAGE Open Med. 2020, 8. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, D.-Y.; Zhu, Y.-W.; Jiang, Z.-L.; Cui, K.; Zhang, S.; Chen, L.-H. Population pharmacokinetic modeling and clinical application of vancomycin in Chinese patients hospitalized in intensive care units. Sci. Rep. 2021, 11, 2670. [Google Scholar] [CrossRef]
- Šíma, M.; Michaličková, D.; Ryšánek, P.; Cihlářová, P.; Kuchař, M.; Lžičařová, D.; Beroušek, J.; Hartinger, J.M.; Vymazal, T.; Slanař, O. No Time Dependence of Ciprofloxacin Pharmacokinetics in Critically Ill Adults: Comparison of Individual and Population Analyses. Pharmaceutics 2021, 13, 1156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-C.; Zou, Y.; Xiao, Y.-W.; Wang, F.; Zhang, B.-K.; Xiang, D.-X.; Yu, F.; Luo, H.; Sandaradura, I.; Yan, M. Does Prolonged Infusion Time Really Improve the Efficacy of Meropenem Therapy? A Prospective Study in Critically Ill Patients. Infect. Dis. Ther. 2021, 11, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Alsultan, A.; Dasuqi, S.A.; Aljamaan, F.; Omran, R.A.; Syed, S.A.; AlJaloud, T.; AlAhmadi, A.; Alqahtani, S.; Hamad, M.A. Pharmacokinetics of meropenem in critically ill patients in Saudi Arabia. Saudi Pharm. J. 2021, 29, 1272–1277. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Li, X.; Zhao, S.; He, N.; Zhai, S.; Ge, Q. Dose Optimization of Vancomycin for Critically Ill Patients Undergoing CVVH: A Prospective Population PK/PD Analysis. Antibiotics 2021, 10, 1392. [Google Scholar] [CrossRef]
- Busse, D.; Simon, P.; Schmitt, L.; Petroff, D.; Dorn, C.; Dietrich, A.; Zeitlinger, M.; Huisinga, W.; Michelet, R.; Wrigge, H.; et al. Comparative Plasma and Interstitial Tissue Fluid Pharmacokinetics of Meropenem Demonstrate the Need for Increasing Dose and Infusion Duration in Obese and Non-obese Patients. Clin. Pharmacokinet. 2021, 61, 655–672. [Google Scholar] [CrossRef]
- Farkas, A.; Oikonomou, K.; Ghanbar, M.; Villasurda, P.; Varghese, J.; Lipman, J.; Sassine, J.; Ranganathan, D.; Roberts, J.A. Population Pharmacokinetics of Intraperitoneal Gentamicin and the Impact of Varying Dwell Times on Pharmacodynamic Target Attainment in Patients with Acute Peritonitis Undergoing Peritoneal Dialysis. Antimicrob. Agents Chemother. 2022, 66, e0167921. [Google Scholar] [CrossRef]
- Hahn, J.; Min, K.L.; Kang, S.; Yang, S.; Park, M.S.; Wi, J.; Chang, M.J. Population Pharmacokinetics and Dosing Optimization of Piperacillin-Tazobactam in Critically Ill Patients on Extracorporeal Membrane Oxygenation and the Influence of Concomitant Renal Replacement Therapy. Microbiol. Spectr. 2021, 9, e0063321. [Google Scholar] [CrossRef] [PubMed]
- Gijsen, M.; Elkayal, O.; Annaert, P.; Van Daele, R.; Meersseman, P.; Debaveye, Y.; Wauters, J.; Dreesen, E.; Spriet, I. Meropenem Target Attainment and Population Pharmacokinetics in Critically Ill Septic Patients with Preserved or Increased Renal Function. Infect. Drug Resist. 2022, 15, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Pressiat, C.; Kudela, A.; De Roux, Q.; Khoudour, N.; Alessandri, C.; Haouache, H.; Vodovar, D.; Woerther, P.-L.; Hutin, A.; Ghaleh, B.; et al. Population Pharmacokinetics of Amikacin in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation. Pharmaceutics 2022, 14, 289. [Google Scholar] [CrossRef]
- Alihodzic, D.; Wicha, S.G.; Frey, O.R.; König, C.; Baehr, M.; Jarczak, D.; Kluge, S.; Langebrake, C. Ciprofloxacin in Patients Undergoing Extracorporeal Membrane Oxygenation (ECMO): A Population Pharmacokinetic Study. Pharmaceutics 2022, 14, 965. [Google Scholar] [CrossRef]
- Šíma, M.; Bobek, D.; Cihlářová, P.; Ryšánek, P.; Roušarová, J.; Beroušek, J.; Kuchař, M.; Vymazal, T.; Slanař, O. Factors Affecting the Metabolic Conversion of Ciprofloxacin and Exposure to Its Main Active Metabolites in Critically Ill Patients: Population Pharmacokinetic Analysis of Desethylene Ciprofloxacin. Pharmaceutics 2022, 14, 1627. [Google Scholar] [CrossRef]
- Kang, S.; Yang, S.; Hahn, J.; Jang, J.Y.; Min, K.L.; Wi, J.; Chang, M.J. Dose Optimization of Meropenem in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation in Critically Ill Cardiac Patients: Pharmacokinetic/Pharmacodynamic Modeling. J. Clin. Med. 2022, 11, 6621. [Google Scholar] [CrossRef] [PubMed]
- An, G.; Creech, C.B.; Wu, N.; Nation, R.L.; Gu, K.; Nalbant, D.; Jimenez-Truque, N.; Fissell, W.; Rolsma, S.; Patel, P.C.; et al. Evaluation of Empirical Dosing Regimens for Meropenem in Intensive Care Unit Patients Using Population Pharmacokinetic Modeling and Target Attainment Analysis. Antimicrob. Agents Chemother. 2023, 67, e0131222. [Google Scholar] [CrossRef]
- Bai, J.; Wen, A.; Li, Z.; Li, X.; Duan, M. Population pharmacokinetics and dosing optimisation of imipenem in critically ill patients. Eur. J. Hosp. Pharm. 2023. [Google Scholar] [CrossRef]
- Martínez-Casanova, J.; Esteve-Pitarch, E.; Colom-Codina, H.; Gumucio-Sanguino, V.D.; Cobo-Sacristán, S.; Shaw, E.; Maisterra-Santos, K.; Sabater-Riera, J.; Pérez-Fernandez, X.L.; Rigo-Bonnin, R.; et al. Predictive Factors of Piperacillin Exposure and the Impact on Target Attainment after Continuous Infusion Administration to Critically Ill Patients. Antibiotics 2023, 12, 531. [Google Scholar] [CrossRef]
- An, G.; Creech, C.B.; Wu, N.; Nation, R.L.; Gu, K.; Nalbant, D.; Jimenez-Truque, N.; Fissell, W.; Patel, P.C.; Fishbane, N.; et al. Population pharmacokinetics and target attainment analyses to identify a rational empirical dosing strategy for cefepime in critically ill patients. J. Antimicrob. Chemother. 2023, 78, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Zoller, M.; Fuhr, U.; Jaehde, U.; Ullah, S.; Liebchen, U.; Büsker, S.; Zander, J.; Flury, B.B.; Taubert, M. Cefepime Population Pharmacokinetics, Antibacterial Target Attainment, and Estimated Probability of Neurotoxicity in Critically Ill Patients. Antimicrob. Agents Chemother. 2023, 67, e0030923. [Google Scholar] [CrossRef]
- Ehmann, L.; Zoller, M.; Minichmayr, I.K.; Scharf, C.; Huisinga, W.; Zander, J.; Kloft, C. Development of a dosing algorithm for meropenem in critically ill patients based on a population pharmacokinetic/pharmacodynamic analysis. Int. J. Antimicrob. Agents 2019, 54, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Soraluce, A.; Barrasa, H.; Asín-Prieto, E.; Sánchez-Izquierdo, J.; Maynar, J.; Isla, A.; Rodríguez-Gascón, A. Novel Population Pharmacokinetic Model for Linezolid in Critically Ill Patients and Evaluation of the Adequacy of the Current Dosing Recommendation. Pharmaceutics 2020, 12, 54. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, D.-H.; Kim, J.S.; Jung, W.-B.; Heo, W.; Kim, Y.K.; Kim, S.H.; No, T.-H.; Jo, K.M.; Ko, J.; et al. Pharmacokinetics and Monte Carlo Simulation of Meropenem in Critically Ill Adult Patients Receiving Extracorporeal Membrane Oxygenation. Front. Pharmacol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Dedkaew, T.; Cressey, T.R.; Punyawudho, B.; Lucksiri, A. Pharmacokinetics of vancomycin in critically ill patients in Thailand. Int. J. Pharm. Pharm. Sci. 2015, 7, 232–237. [Google Scholar]
- Seo, H.; Kim, Y.K.; Park, S.; Kim, H.-I.; Lee, D.-H. Population Pharmacokinetics and Monte Carlo Simulation of Cefepime in Critically Ill Patients with Hospital-Acquired/Ventilator-Associated Pneumonia. Infect. Chemother. 2023, 55, 29–41. [Google Scholar] [CrossRef]
- Mattioli, F.; Fucile, C.; Del Bono, V.; Marini, V.; Parisini, A.; Molin, A.; Zuccoli, M.L.; Milano, G.; Danesi, R.; Marchese, A.; et al. Population pharmacokinetics and probability of target attainment of meropenem in critically ill patients. Eur. J. Clin. Pharmacol. 2016, 72, 839–848. [Google Scholar] [CrossRef]
- Abdulla, A.; Rogouti, O.; Hunfeld, N.G.M.; Endeman, H.; Dijkstra, A.; van Gelder, T.; Muller, A.E.; de Winter, B.C.M.; Koch, B.C.P. Population pharmacokinetics and target attainment of ciprofloxacin in critically ill patients. Eur. J. Clin. Pharmacol. 2020, 76, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.; Abdul-Aziz, M.H.; Burrows, F.; Buscher, H.; Corley, A.; Diehl, A.; Levkovich, B.J.; Pellegrino, V.; Reynolds, C.; Rudham, S.; et al. Population pharmacokinetics of ciprofloxacin in critically ill patients receiving extracorporeal membrane oxygenation (an ASAP ECMO study). Anaesth. Crit. Care Pain Med. 2022, 41, 101080. [Google Scholar] [CrossRef]
- Isla, A.; Rodríguez-Gascón, A.; Trocóniz, I.F.; Bueno, L.; Solinís, M.; Maynar, J.; Sánchez-Izquierdo, J.; Pedraz, J.L. Population Pharmacokinetics of Meropenem in Critically Ill Patients Undergoing Continuous Renal Replacement Therapy. Clin. Pharmacokinet. 2008, 47, 173–180. [Google Scholar] [CrossRef]
- Alobaid, A.S.; Wallis, S.C.; Jarrett, P.; Starr, T.; Stuart, J.; Lassig-Smith, M.; Mejia, J.L.O.; Roberts, M.S.; Roger, C.; Udy, A.A.; et al. Population Pharmacokinetics of Piperacillin in Nonobese, Obese, and Morbidly Obese Critically Ill Patients. Antimicrob. Agents Chemother. 2017, 61, e01276-16. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Kim, H.S.; Park, S.; Kim, H.-I.; Lee, S.H.; Lee, D.-H. Population pharmacokinetics of piperacillin/tazobactam in critically ill Korean patients and the effects of extracorporeal membrane oxygenation. J. Antimicrob. Chemother. 2022, 77, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Ernest, D.; Cutler, D.J. Gentamicin clearance during continuous arteriovenous hemodiafiltration. Crit. Care Med. 1992, 20, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Shikuma, L.R.; Ackerman, B.H.; Weaver, R.H.; Solem, L.D.; Strate, R.G.; Cerra, F.B.; Zaske, D.E. Effects of treatment and the metabolic response to injury on drug clearance: A prospective study with piperacillin. Crit Care Med. 1990, 18, 37–41. [Google Scholar] [CrossRef]
- Cornwell, E.E.; Belzberg, H.; Berne, T.V.; Gill, M.A.; Theodorou, D.; Kern, J.W.; Yu, W.; Asensio, J.; Demetriades, D. Pharmacokinetics of aztreonam in critically ill surgical patients. Am. J. Heal. Pharm. 1997, 54, 537–540. [Google Scholar] [CrossRef]
- Giles, L.J.; Jennings, A.C.; Thomson, A.H.; Creed, G.; Beale, R.J.; McLuckie, A. Pharmacokinetics of meropenem in intensive care unit patients receiving continuous veno-venous hemofiltration or hemodiafiltration. Crit. Care Med. 2000, 28, 632–637. [Google Scholar] [CrossRef]
- Barletta, J.F.; Johnson, S.B.; Nix, D.E.; Nix, L.C.; Erstad, B.L. Population Pharmacokinetics of Aminoglycosides in Critically Ill Trauma Patients on Once-Daily Regimens. J. Trauma: Inj. Infect. Crit. Care 2000, 49, 869–872. [Google Scholar] [CrossRef]
- Malone, R.S.; Fish, D.N.; Abraham, E.; Teitelbaum, I. Pharmacokinetics of Cefepime during Continuous Renal Replacement Therapy in Critically Ill Patients. Antimicrob. Agents Chemother. 2001, 45, 3148–3155. [Google Scholar] [CrossRef]
- Traunmüller, F.; Schenk, P.; Mittermeyer, C.; Thalhammer-Scherrer, R.; Ratheiser, K.; Thalhammer, F. Clearance of ceftazidime during continuous venovenous haemofiltration in critically ill patients. J. Antimicrob. Chemother. 2002, 49, 129–134. [Google Scholar] [CrossRef]
- Uchino, S.; Cole, L.; Morimatsu, H.; Goldsmith, D.; Bellomo, R. Clearance of vancomycin during high-volume haemofiltration: Impact of pre-dilution. Intensive Care Med. 2002, 28, 1664–1667. [Google Scholar] [CrossRef]
- Fiaccadori, E.; Maggiore, U.; Rotelli, C.; Giacosa, R.; Parenti, E.; Picetti, E.; Sagripanti, S.; Manini, P.; Andreoli, R.; Cabassi, A. Removal of linezolid by conventional intermittent hemodialysis, sustained low-efficiency dialysis, or continuous venovenous hemofiltration in patients with acute renal failure. Crit. Care Med. 2004, 32, 2437–2442. [Google Scholar] [CrossRef]
- Meyer, B.; Kornek, G.V.; Nikfardjam, M.; Karth, G.D.; Heinz, G.; Locker, G.J.; Jaeger, W.; Thalhammer, F. Multiple-dose pharmacokinetics of linezolid during continuous venovenous haemofiltration. J. Antimicrob. Chemother. 2005, 56, 172–179. [Google Scholar] [CrossRef]
- Fish, D.N.; Teitelbaum, I.; Abraham, E. Pharmacokinetics and Pharmacodynamics of Imipenem during Continuous Renal Replacement Therapy in Critically Ill Patients. Antimicrob. Agents Chemother. 2005, 49, 2421–2428. [Google Scholar] [CrossRef] [PubMed]
- Kielstein, J.T.; Czock, D.; Schöpke, T.; Hafer, C.; Bode-Böger, S.M.; Kuse, E.; Keller, F.; Fliser, D. Pharmacokinetics and total elimination of meropenem and vancomycin in intensive care unit patients undergoing extended daily dialysis*. Crit. Care Med. 2006, 34, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Klansuwan, N.; Ratanajamit, C.; Kasiwong, S.; Wangsiripaisan, A. Clearance of vancomycin during high-efficiency hemodialysis. J. Med. Assoc. Thail. 2006, 89, 986–991. [Google Scholar] [PubMed]
- Bracco, D.; Landry, C.; Dubois, M.-J.; Eggimann, P. Pharmacokinetic variability of extended interval tobramycin in burn patients. Burns 2008, 34, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, O.; Hafer, C.; Langhoff, A.; Kaever, V.; Kumar, V.; Welte, T.; Haller, H.; Fliser, D.; Kielstein, J.T. Pharmacokinetics of ertapenem in critically ill patients with acute renal failure undergoing extended daily dialysis. Nephrol. Dial. Transplant. 2008, 24, 267–271. [Google Scholar] [CrossRef]
- Golestaneh, L.; Gofran, A.; Mokrzycki, M.; Chen, J. Removal of vancomycin in sustained low-efficiency dialysis (SLED): A need for better surveillance and dosing. Clin. Nephrol. 2009, 72, 286–291. [Google Scholar] [CrossRef]
- Deshpande, P.; Chen, J.; Gofran, A.; Murea, M.; Golestaneh, L. Meropenem removal in critically ill patients undergoing sustained low-efficiency dialysis (SLED). Nephrol. Dial. Transplant. 2010, 25, 2632–2636. [Google Scholar] [CrossRef]
- Bilgrami, I.; Roberts, J.A.; Wallis, S.C.; Thomas, J.; Davis, J.; Fowler, S.; Goldrick, P.B.; Lipman, J. Meropenem Dosing in Critically Ill Patients with Sepsis Receiving High-Volume Continuous Venovenous Hemofiltration. Antimicrob. Agents Chemother. 2010, 54, 2974–2978. [Google Scholar] [CrossRef]
- Seyler, L.; Cotton, F.; Taccone, F.S.; De Backer, D.; Macours, P.; Vincent, J.-L.; Jacobs, F. Recommended β-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit. Care 2011, 15, R137. [Google Scholar] [CrossRef] [PubMed]
- Baptista, J.P.; Sousa, E.; Martins, P.J.; Pimentel, J.M. Augmented renal clearance in septic patients and implications for vancomycin optimisation. Int. J. Antimicrob. Agents 2012, 39, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.M.; Roberts, J.A.; Roberts, M.S.; Liu, X.; Nair, P.; Cole, L.; Lipman, J.; Bellomo, R. Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy. Crit. Care Med. 2012, 40, 1523–1528. [Google Scholar] [CrossRef]
- Petejova, N.; Martinek, A.; Zahalkova, J.; Duricova, J.; Brozmannova, H.; Urbanek, K.; Grundmann, M.; Plasek, J.; Kacirova, I. Vancomycin pharmacokinetics during high-volume continuous venovenous hemofiltration in critically ill septic patients. Biomed. Pap. 2014, 158, 065–072. [Google Scholar] [CrossRef]
- D’arcy, D.M.; Casey, E.; Gowing, C.M.; Donnelly, M.B.; I Corrigan, O. An open prospective study of amikacin pharmacokinetics in critically ill patients during treatment with continuous venovenous haemodiafiltration. BMC Pharmacol. Toxicol. 2012, 13, 14. [Google Scholar] [CrossRef]
- Binder, L.; Schwörer, H.; Hoppe, S.; Streit, F.; Neumann, S.; Beckmann, A.; Wachter, R.; Oellerich, M.; Walson, P.D. Pharmacokinetics of Meropenem in Critically Ill Patients With Severe Infections. Ther. Drug Monit. 2013, 35, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Adnan, S.; Li, J.X.; Wallis, S.C.; Rudd, M.; Jarrett, P.; Paterson, D.L.; Lipman, J.; Udy, A.A.; Roberts, J.A. Pharmacokinetics of meropenem and piperacillin in critically ill patients with indwelling surgical drains. Int. J. Antimicrob. Agents 2013, 42, 90–93. [Google Scholar] [CrossRef]
- Carlier, M.; Carrette, S.; Roberts, J.A.; Stove, V.; Verstraete, A.; Hoste, E.; Depuydt, P.; Decruyenaere, J.; Lipman, J.; Wallis, S.C.; et al. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: Does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit. Care 2013, 17, R84. [Google Scholar] [CrossRef]
- Sturm, A.W.; Allen, N.; Rafferty, K.D.; Fish, D.N.; Toschlog, E.; Newell, M.; Waibel, B. Pharmacokinetic Analysis of Piperacillin Administered with Tazobactam in Critically Ill, Morbidly Obese Surgical Patients. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2013, 34, 28–35. [Google Scholar] [CrossRef]
- Carlier, M.; Carrette, S.; Stove, V.; Verstraete, A.G.; De Waele, J.J. Does consistent piperacillin dosing result in consistent therapeutic concentrations in critically ill patients? A longitudinal study over an entire antibiotic course. Int. J. Antimicrob. Agents 2014, 43, 470–473. [Google Scholar] [CrossRef]
- Huttner, A.; Von Dach, E.; Renzoni, A.; Huttner, B.D.; Affaticati, M.; Pagani, L.; Daali, Y.; Pugin, J.; Karmime, A.; Fathi, M.; et al. Augmented renal clearance, low beta-lactam concentrations and clinical outcomes in the critically ill: An observational prospective cohort study. Int. J. Antimicrob. Agents 2015, 45, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Sime, F.B.; Roberts, M.S.; Tiong, I.S.; Gardner, J.H.; Lehman, S.; Peake, S.L.; Hahn, U.; Warner, M.S.; Roberts, J.A. Can therapeutic drug monitoring optimize exposure to piperacillin in febrile neutropenic patients with haematological malignancies? A randomized controlled trial. J. Antimicrob. Chemother. 2015, 70, 2369–2375. [Google Scholar] [CrossRef] [PubMed]
- Awissi, D.; Beauchamp, A.; Hébert, E.; Lavigne, V.; Munoz, D.L.; Lebrun, G.; Savoie, M.; Fagnan, M.; Amyot, J.; Tétreault, N.; et al. Pharmacokinetics of an Extended 4-hour Infusion of Piperacillin-Tazobactam in Critically Ill Patients Undergoing Continuous Renal Replacement Therapy. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, 600–607. [Google Scholar] [CrossRef]
- Villa, G.; Cassetta, M.I.; Tofani, L.; Valente, S.; Chelazzi, C.; Falsini, S.; De Gaudio, A.R.; Novelli, A.; Ronco, C.; Adembri, C. Linezolid extracorporeal removal during haemodialysis with high cut-off membrane in critically ill patients. Int. J. Antimicrob. Agents 2015, 46, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Wen, A.; Li, Z.; Yu, J.; Li, R.; Cheng, S.; Duan, M.; Bai, J. Clinical Validation of Therapeutic Drug Monitoring of Imipenem in Spent Effluent in Critically Ill Patients Receiving Continuous Renal Replacement Therapy: A Pilot Study. PLOS ONE 2016, 11, e0153927. [Google Scholar] [CrossRef]
- Boucher, B.A.; Hudson, J.Q.; Hill, D.M.; Swanson, J.M.; Wood, G.C.; Laizure, S.C.; Arnold-Ross, A.; Hu, Z.-Y.; Hickerson, W.L. Pharmacokinetics of Imipenem/Cilastatin Burn Intensive Care Unit Patients Undergoing High-Dose Continuous Venovenous Hemofiltration. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2016, 36, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.; Mahul, M.; Breilh, D.; Legeron, R.; Signe, J.; Jean-Pierre, H.; Uhlemann, A.-C.; Molinari, N.; Jaber, S. Repeated Piperacillin-Tazobactam Plasma Concentration Measurements in Severely Obese Versus Nonobese Critically Ill Septic Patients and the Risk of Under– and Overdosing*. Crit. Care Med. 2017, 45, e470–e478. [Google Scholar] [CrossRef]
- Roger, C.; Cotta, M.O.; Muller, L.; Wallis, S.C.; Lipman, J.; Lefrant, J.-Y.; Roberts, J.A. Impact of renal replacement modalities on the clearance of piperacillin-tazobactam administered via continuous infusion in critically ill patients. Int. J. Antimicrob. Agents 2017, 50, 227–231. [Google Scholar] [CrossRef]
- Carrié, C.; Petit, L.; D'Houdain, N.; Sauvage, N.; Cottenceau, V.; Lafitte, M.; Foumenteze, C.; Hisz, Q.; Menu, D.; Legeron, R.; et al. Association between augmented renal clearance, antibiotic exposure and clinical outcome in critically ill septic patients receiving high doses of β-lactams administered by continuous infusion: A prospective observational study. Int. J. Antimicrob. Agents 2018, 51, 443–449. [Google Scholar] [CrossRef]
- Ruiz-Ramos, J.; Villarreal, E.; Gordon, M.; Martin-Cerezula, M.; Broch, M.J.; Marqués, M.R.; Poveda, J.L.; Castellanos-Ortega; Ramírez, P. Implication of Haemodiafiltration Flow Rate on Amikacin Pharmacokinetic Parameters in Critically Ill Patients. Blood Purif. 2017, 45, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Fournier, A.; Eggimann, P.; Pantet, O.; Pagani, J.L.; Dupuis-Lozeron, E.; Pannatier, A.; Sadeghipour, F.; Voirol, P.; Que, Y.-A. Impact of Real-Time Therapeutic Drug Monitoring on the Prescription of Antibiotics in Burn Patients Requiring Admission to the Intensive Care Unit. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Sinnollareddy, M.G.; Roberts, M.S.; Lipman, J.; Peake, S.L.; A Roberts, J. Pharmacokinetics of piperacillin in critically ill patients with acute kidney injury receiving sustained low-efficiency diafiltration. J. Antimicrob. Chemother. 2018, 73, 1647–1650. [Google Scholar] [CrossRef]
- Wang, S.; Lin, F.; Ruan, J.; Ye, H.; Wang, L. Pharmacokinetics of multiple doses of teicoplanin in Chinese elderly critical patients. Expert Rev. Clin. Pharmacol. 2018, 11, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Kassel, L.E.; Van Matre, E.T.; Foster, C.J.; Fish, D.N.; Mueller, S.W.; Sherman, D.S.; Wempe, M.F.; MacLaren, R.; Neumann, R.T.; Kiser, T.H. A Randomized Pharmacokinetic and Pharmacodynamic Evaluation of Every 8-Hour and 12-Hour Dosing Strategies of Vancomycin and Cefepime in Neurocritically ill Patients. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Olbrisch, K.; Kisch, T.; Thern, J.; Kramme, E.; Rupp, J.; Graf, T.; Wicha, S.G.; Mailänder, P.; Raasch, W. After standard dosage of piperacillin plasma concentrations of drug are subtherapeutic in burn patients. Naunyn-Schmiedeberg's Arch. Pharmacol. 2018, 392, 229–241. [Google Scholar] [CrossRef]
- Barrasa, H.; Soraluce, A.; Isla, A.; Martín, A.; Maynar, J.; Canut, A.; Sánchez-Izquierdo, J.A.; Rodríguez-Gascón, A. Pharmacokinetics of linezolid in critically ill patients on continuous renal replacement therapy: Influence of residual renal function on PK/PD target attainment. J. Crit. Care 2019, 50, 69–76. [Google Scholar] [CrossRef]
- Schmidt, J.J.; Strunk, A.-K.; David, S.; Bode-Böger, S.M.; Martens-Lobenhoffer, J.; Knitsch, W.; Scherneck, S.; Welte, T.; Kielstein, J.T. Single- and multiple-dose pharmacokinetics and total removal of colistin in critically ill patients with acute kidney injury undergoing prolonged intermittent renal replacement therapy. J. Antimicrob. Chemother. 2019, 74, 997–1002. [Google Scholar] [CrossRef]
- Singhan, W.; Vadcharavivad, S.; Areepium, N.; Wittayalertpanya, S.; Chaijamorn, W.; Srisawat, N. The effect of direct hemoperfusion with polymyxin B immobilized cartridge on meropenem in critically ill patients requiring renal support. J. Crit. Care 2019, 51, 71–76. [Google Scholar] [CrossRef]
- Bouglé, A.; Dujardin, O.; Lepère, V.; Hamou, N.A.; Vidal, C.; Lebreton, G.; Salem, J.-E.; El-Helali, N.; Petijean, G.; Amour, J. PHARMECMO: Therapeutic drug monitoring and adequacy of current dosing regimens of antibiotics in patients on Extracorporeal Life Support. Anaesth. Crit. Care Pain Med. 2019, 38, 493–497. [Google Scholar] [CrossRef]
- Dhaese, S.A.; Thooft, A.D.; Farkas, A.; Lipman, J.; Verstraete, A.G.; Stove, V.; Roberts, J.A.; De Waele, J.J. Early target attainment of continuous infusion piperacillin/tazobactam and meropenem in critically ill patients: A prospective observational study. J. Crit. Care 2019, 52, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Leon, L.; Guerci, P.; Pape, E.; Thilly, N.; Luc, A.; Germain, A.; Butin-Druoton, A.-L.; Losser, M.-R.; Birckener, J.; Scala-Bertola, J.; et al. Serum and peritoneal exudate concentrations after high doses of β-lactams in critically ill patients with severe intra-abdominal infections: An observational prospective study. J. Antimicrob. Chemother. 2019, 75, 156–161. [Google Scholar] [CrossRef]
- A Roberts, J.; Joynt, G.M.; Lee, A.; Choi, G.; Bellomo, R.; Kanji, S.; Mudaliar, M.Y.; Peake, S.L.; Stephens, D.; Taccone, F.S.; et al. The Effect of Renal Replacement Therapy and Antibiotic Dose on Antibiotic Concentrations in Critically Ill Patients: Data From the Multinational Sampling Antibiotics in Renal Replacement Therapy Study. Clin. Infect. Dis. 2020, 72, 1369–1378. [Google Scholar] [CrossRef]
- Gieling, E.M.; Wallenburg, E.; Frenzel, T.; de Lange, D.W.; Schouten, J.A.; Oever, J.T.; Kolwijck, E.; Burger, D.M.; Pickkers, P.; ter Heine, R.; et al. Higher Dosage of Ciprofloxacin Necessary in Critically Ill Patients: A New Dosing Algorithm Based on Renal Function and Pathogen Susceptibility. Clin. Pharmacol. Ther. 2020, 108, 770–774. [Google Scholar] [CrossRef]
- Moni, M.; Sudhir, A.S.; Dipu, T.S.; Mohamed, Z.; Prabhu, B.P.; Edathadathil, F.; Balachandran, S.; Singh, S.K.; Prasanna, P.; Menon, V.P.; et al. Clinical efficacy and pharmacokinetics of colistimethate sodium and colistin in critically ill patients in an Indian hospital with high endemic rates of multidrug-resistant Gram-negative bacterial infections: A prospective observational study. Int. J. Infect. Dis. 2020, 100, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-Y.; Shen, L.-J.; Wu, V.-C.; Ko, W.-J.; Wu, C.-C.; Wu, F.-L.L. Pharmacokinetics and dosing of vancomycin in patients undergoing sustained low efficiency daily diafiltration (SLEDD-f): A prospective study. J. Formos. Med Assoc. 2021, 120, 737–743. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, F.M.; Zamoner, W.; dos Reis, P.F.; Balbi, A.L.; Ponce, D. Vancomycin for Dialytic Therapy in Critically Ill Patients: Analysis of Its Reduction and the Factors Associated with Subtherapeutic Concentrations. Int. J. Environ. Res. Public Heal. 2020, 17, 6861. [Google Scholar] [CrossRef]
- Kühn, D.; Metz, C.; Seiler, F.; Wehrfritz, H.; Roth, S.; Alqudrah, M.; Becker, A.; Bracht, H.; Wagenpfeil, S.; Hoffmann, M.; et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: A prospective, observational single-center study. Crit. Care 2020, 24, 664. [Google Scholar] [CrossRef]
- Corcione, S.; De Nicolò, A.; Lupia, T.; Segala, F.V.; Pensa, A.; Loia, R.C.; Romeo, M.R.; Di Perri, G.; Stella, M.; D’avolio, A.; et al. Observed concentrations of amikacin and gentamycin in the setting of burn patients with gram-negative bacterial infections: Preliminary data from a prospective study. Therapies 2020, 76, 409–414. [Google Scholar] [CrossRef]
- Petersson, J.; Giske, C.G.; Eliasson, E. Poor Correlation between Meropenem and Piperacillin Plasma Concentrations and Delivered Dose of Continuous Renal Replacement Therapy. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Nicolau, D.P.; De Waele, J.; Kuti, J.L.; Caro, L.; Larson, K.B.; Yu, B.; Gadzicki, E.; Zeng, Z.; Rhee, E.G.; Rizk, M.L. Pharmacokinetics and Pharmacodynamics of Ceftolozane/Tazobactam in Critically Ill Patients With Augmented Renal Clearance. Int. J. Antimicrob. Agents 2021, 57, 106299. [Google Scholar] [CrossRef] [PubMed]
- Fillâtre, P.; Lemaitre, F.; Nesseler, N.; Schmidt, M.; Besset, S.; Launey, Y.; Maamar, A.; Daufresne, P.; Flecher, E.; Le Tulzo, Y.; et al. Impact of extracorporeal membrane oxygenation (ECMO) support on piperacillin exposure in septic patients: A case–control study. J. Antimicrob. Chemother. 2021, 76, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- Moser, S.; Rehm, S.; Guertler, N.; Hinic, V.; Dräger, S.; Bassetti, S.; Rentsch, K.M.; Sendi, P.; Osthoff, M. Probability of pharmacological target attainment with flucloxacillin in Staphylococcus aureus bloodstream infection: A prospective cohort study of unbound plasma and individual MICs. J. Antimicrob. Chemother. 2021, 76, 1845–1854. [Google Scholar] [CrossRef]
- Esteve-Pitarch, E.; Gumucio-Sanguino, V.D.; Cobo-Sacristán, S.; Shaw, E.; Maisterra-Santos, K.; Sabater-Riera, J.; Pérez-Fernandez, X.L.; Rigo-Bonnin, R.; Tubau-Quintano, F.; Carratalà, J.; et al. Continuous Infusion of Piperacillin/Tazobactam and Meropenem in ICU Patients Without Renal Dysfunction: Are Patients at Risk of Underexposure? Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Pařízková, R.; Martínková, J.; Havel, E.; Šafránek, P.; Kaška, M.; Astapenko, D.; Bezouška, J.; Chládek, J.; Černý, V. Additional File 1 of Impact of Cumulative Fluid Balance on the Pharmacokinetics of Extended Infusion Meropenem in Critically Ill Patients with Sepsis. Available online: https://pubmed.ncbi.nlm.nih.gov/34274013/ (accessed on 18 July 2024). [CrossRef]
- Liebchen, U.; Paal, M.; Bucher, V.; Vogeser, M.; Irlbeck, M.; Schroeder, I.; Zoller, M.; Scharf, C. Trough concentrations of meropenem and piperacillin during slow extended dialysis in critically ill patients with intermittent and continuous infusion: A prospective observational study. J. Crit. Care 2021, 67, 26–32. [Google Scholar] [CrossRef]
- Messiano, C.G.; Junior, R.M.; Pereira, G.O.; Junior, E.M.d.S.; Gomez, D.D.S.; Santos, S.R.C.J. Therapeutic Target Attainment of 3-Hour Extended Infusion of Meropenem in Patients With Septic Burns. Clin. Ther. 2022. [Google Scholar] [CrossRef]
- Zoller, M.; Paal, M.; Greimel, A.; Kallee, S.; Vogeser, M.; Irlbeck, M.; Schroeder, I.; Liebchen, U.; Scharf, C. Serum linezolid concentrations are reduced in critically ill patients with pulmonary infections: A prospective observational study. J. Crit. Care 2022, 71, 154100. [Google Scholar] [CrossRef]
- Shekar, K.; Abdul-Aziz, M.H.; Cheng, V.; Burrows, F.; Buscher, H.; Cho, Y.-J.; Corley, A.; Diehl, A.; Gilder, E.; Jakob, S.M.; et al. Antimicrobial Exposures in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation. Am. J. Respir. Crit. Care Med. 2023, 207, 704–720. [Google Scholar] [CrossRef] [PubMed]
- Smeets, T.J.; de Geus, H.R.; Rietveld, A.; Rietdijk, W.J.; Koch, B.C.; Endeman, H.; Hunfeld, N.G. Pursuing the Real Vancomycin Clearance during Continuous Renal Replacement Therapy in Intensive Care Unit Patients: Is There Adequate Target Attainment? Blood Purif. 2023, 52, 652–659. [Google Scholar] [CrossRef]
- Correia, P.; Launay, M.; Balluet, R.; Gergele, L.; Gauthier, V.; Morel, J.; Beuret, P.; Mariat, C.; Thiery, G.; Ragey, S.P. Towards optimization of ceftazidime dosing in obese ICU patients: The end of the ‘one-size-fits-all’ approach? J. Antimicrob. Chemother. 2023, 78, 2968–2975. [Google Scholar] [CrossRef]
- Martin, C.; Lambert, D.; Bruguerolle, B.; Saux, P.; Freney, J.; Fleurette, J.; Meugnier, H.; Gouin, F. Ofloxacin pharmacokinetics in mechanically ventilated patients. Antimicrob. Agents Chemother. 1991, 35, 1582–1585. [Google Scholar] [CrossRef]
- Akers, K.S.; Niece, K.L.; Chung, K.K.; Cannon, J.W.; Cota, J.M.; Murray, C.K. Modified Augmented Renal Clearance score predicts rapid piperacillin and tazobactam clearance in critically ill surgery and trauma patients. J. Trauma: Inj. Infect. Crit. Care 2014, 77, S163–S170. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.S.; Sanches-Giraud, C.; Silva, C.V.; Oliveira, A.M.R.R.; da Silva, J.M.; Gemperli, R.; Santos, S.R. Imipenem in burn patients: Pharmacokinetic profile and PK/PD target attainment. J. Antibiot. 2014, 68, 143–147. [Google Scholar] [CrossRef]
- Ko, A.; Harada, M.Y.; Barmparas, G.; Jay, J.; Sun, B.J.; Chen, E.; Mehrzadi, D.; Patel, B.; Mason, R.; Ley, E.J. Reducing acute kidney injury due to vancomycin in trauma patients. J. Trauma: Inj. Infect. Crit. Care 2016, 81, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Mokline, A.; Gharsallah, L.; Rahmani, I.; Gaies, E.; Tabelsi, S.; A Messadi, A. Pharmacokinetics and pharmacodynamics of Linezolid in burn patients. Ann. Burn. Fire Disasters 2018, 31, 118–121. [Google Scholar]
- Lim, S.K.; Lee, S.A.; Kim, C.; Kang, E.; Choi, Y.H.; Park, I. High variability of teicoplanin concentration in patients with continuous venovenous hemodiafiltration. Hemodial. Int. 2019, 23, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, T.; Miljkovic, B.; Mikov, M.; Satara, S.S.; Dragic, S.; Momcicevic, D.; Kovacevic, P. The Effect of Hypoalbuminemia on the Therapeutic Concentration and Dosage of Vancomycin in Critically Ill Septic Patients in Low-Resource Countries. Dose-Response 2019, 17. [Google Scholar] [CrossRef]
- Wu, C.-C.; Tai, C.H.; Liao, W.-Y.; Wang, C.-C.; Kuo, C.-H.; Lin, S.-W.; Ku, S.-C. Augmented renal clearance is associated with inadequate antibiotic pharmacokinetic/pharmacodynamic target in Asian ICU population: A prospective observational study. Infect. Drug Resist. 2019, ume 12, 2531–2541. [Google Scholar] [CrossRef]
- Morbitzer, K.A.; Rhoney, D.H.; Dehne, K.A.; Jordan, J.D. Enhanced renal clearance and impact on vancomycin pharmacokinetic parameters in patients with hemorrhagic stroke. J. Intensive Care 2019, 7, 51. [Google Scholar] [CrossRef]
- Breilh, D.; Honore, P.M.; De Bels, D.; Roberts, J.A.; Gordien, J.B.; Fleureau, C.; Dewitte, A.; Coquin, J.; Rozé, H.; Perez, P.; et al. Pharmacokinetics and pharmacodynamics of anti-infective agents during continuous veno-venous hemofiltration in critically ill patients: Lessons learned from an ancillary study of the IVOIRE trial. J. Transl. Intern. Med. 2019, 7, 155–169. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Machado, A.S.; Mendes, E.T.; Chaves, L.; Neto, L.V.P.; da Silva, C.V.; Santos, S.R.C.J.; Sanches, C.; Macedo, E.; Levin, A.S. Pharmacokinetic and Pharmacodynamic Characteristics of Vancomycin and Meropenem in Critically Ill Patients Receiving Sustained Low-efficiency Dialysis. Clin. Ther. 2020, 42, 625–633. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Avedissian, S.N.; Al-Qamari, A.; Bohling, T.; Pham, M.; Scheetz, M.H. Pharmacokinetic Assessment of Pre- and Post-Oxygenator Vancomycin Concentrations in Extracorporeal Membrane Oxygenation: A Prospective Observational Study. Clin. Pharmacokinet. 2020, 59, 1575–1587. [Google Scholar] [CrossRef] [PubMed]
- Veillette, J.J.; Winans, S.A.; Maskiewicz, V.K.; Truong, J.; Jones, R.N.; Forland, S.C. Pharmacokinetics and Pharmacodynamics of High-Dose Piperacillin–Tazobactam in Obese Patients. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Gijsen, M.; Dreesen, E.; Van Daele, R.; Annaert, P.; Debaveye, Y.; Wauters, J.; Spriet, I. Pharmacokinetic/Pharmacodynamic Target Attainment Based on Measured versus Predicted Unbound Ceftriaxone Concentrations in Critically Ill Patients with Pneumonia: An Observational Cohort Study. Antibiotics 2021, 10, 557. [Google Scholar] [CrossRef]
- Shi, L.; Zhuang, Z.; Duan, L.; Zhu, C.; Xue, H.; Wang, X.; Xu, X.; Yuan, Y.; Shi, L.; Li, J.; et al. Dose Optimization of Teicoplanin for Critically Ill Patients With Renal Dysfunction and Continuous Renal Replacement Therapy: Experience From a Prospective Interventional Study. Front. Pharmacol. 2022, 13, 817401. [Google Scholar] [CrossRef]
- Zhao, J.; Fan, Y.; Yang, M.; Liang, X.; Wu, J.; Chen, Y.; Guo, B.; Zhang, H.; Wang, R.; Zhang, F.; et al. Association between Augmented Renal Clearance and Inadequate Vancomycin Pharmacokinetic/Pharmacodynamic Targets in Chinese Adult Patients: A Prospective Observational Study. Antibiotics 2022, 11, 837. [Google Scholar] [CrossRef]
- Calov, S.; Munzel, F.; Roehr, A.C.; Frey, O.; Higuita, L.M.S.; Wied, P.; Rosenberger, P.; Haeberle, H.A.; Ngamsri, K.-C. Daptomycin Pharmacokinetics in Blood and Wound Fluid in Critical Ill Patients with Left Ventricle Assist Devices. Antibiotics 2023, 12, 904. [Google Scholar] [CrossRef]
- Tikiso, T.; Fuhrmann, V.; König, C.; Jarczak, D.; Iwersen-Bergmann, S.; Kluge, S.; Wicha, S.G.; Grensemann, J. Acute-on-chronic liver failure alters linezolid pharmacokinetics in critically ill patients with continuous hemodialysis: An observational study. Ann. Intensive Care 2023, 13, 83. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.M.; Liu, X.; A Roberts, J.; Nair, P.; Cole, L.; Roberts, M.S.; Lipman, J.; Bellomo, R. Additional File 1 of A multicenter Study on the Effect of Continuous Hemodiafiltration Intensity on Antibiotic Pharmacokinetics. Available online: https://pubmed.ncbi.nlm.nih.gov/25881576/ (accessed on 18 July 2024). [CrossRef]
- Scharf, C.; Weinelt, F.; Schroeder, I.; Paal, M.; Weigand, M.; Zoller, M.; Irlbeck, M.; Kloft, C.; Briegel, J.; Liebchen, U. Does the cytokine adsorber CytoSorb® reduce vancomycin exposure in critically ill patients with sepsis or septic shock? a prospective observational study. Ann. Intensive Care 2022, 12, 44. [Google Scholar] [CrossRef]
- Wulkersdorfer, B.; Bergmann, F.; Amann, L.; Fochtmann-Frana, A.; Al Jalali, V.; Kurdina, E.; Lackner, E.; Wicha, S.G.; Dorn, C.; Schäfer, B.; et al. Effect of albumin substitution on pharmacokinetics of piperacillin/tazobactam in patients with severe burn injury admitted to the ICU. J. Antimicrob. Chemother. 2023, 79, 262–270. [Google Scholar] [CrossRef]
- Shahrami, B.; Najmeddin, F.; Rouini, M.R.; Najafi, A.; Sadeghi, K.; Amini, S.; Khezrnia, S.S.; Sharifnia, H.R.; Mojtahedzadeh, M. Evaluation of Amikacin Pharmacokinetics in Critically Ill Patients with Intra-abdominal Sepsis. Adv. Pharm. Bull. 2019, 10, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Busse, D.; Petroff, D.; Dorn, C.; Ehmann, L.; Hochstädt, S.; Girrbach, F.; Dietrich, A.; Zeitlinger, M.; Kees, F.; et al. Linezolid Concentrations in Plasma and Subcutaneous Tissue are Reduced in Obese Patients, Resulting in a Higher Risk of Underdosing in Critically Ill Patients: A Controlled Clinical Pharmacokinetic Study. J. Clin. Med. 2020, 9, 1067. [Google Scholar] [CrossRef]
- Del Bono, V.; Giacobbe, D.R.; Marchese, A.; Parisini, A.; Fucile, C.; Coppo, E.; Marini, V.; Arena, A.; Molin, A.; Martelli, A.; et al. Meropenem for treating KPC-producing Klebsiella pneumoniae bloodstream infections: Should we get to the PK/PD root of the paradox? Virulence 2016, 8, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhang, X.; Xie, J.; Li, Q.; He, J.; Hu, L.; Wang, H.; Liu, A.; Xu, J.; Yang, C.; et al. Pharmacokinetic/Pharmacodynamic Parameters of Linezolid in the Epithelial Lining Fluid of Patients With Sepsis. J. Clin. Pharmacol. 2022, 62, 891–897. [Google Scholar] [CrossRef]
- Corti, N.; Rudiger, A.; Chiesa, A.; Marti, I.; Jetter, A.; Rentsch, K.; Müller, D.; Béchir, M.; Maggiorini, M. Pharmacokinetics of Daily Daptomycin in Critically Ill Patients Undergoing Continuous Renal Replacement Therapy. Chemotherapy 2013, 59, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Corcione, S.; D’avolio, A.; Loia, R.C.; Pensa, A.; Segala, F.V.; De Nicolò, A.; Fatiguso, G.; Romeo, M.; Di Perri, G.; Stella, M.; et al. Pharmacokinetics of meropenem in burn patients with infections caused by Gram-negative bacteria: Are we getting close to the right treatment? J. Glob. Antimicrob. Resist. 2020, 20, 22–27. [Google Scholar] [CrossRef]
- Lyu, Y.; Yang, Y.; Li, X.; Peng, M.; He, X.; Zhang, P.; Dong, S.; Wang, W.; Wang, D. Selection of piperacillin/tazobactam infusion mode guided by SOFA score in cancer patients with hospital-acquired pneumonia: A randomized controlled study. Ther. Clin. Risk Manag. 2018, 14, 31–37. [Google Scholar] [CrossRef]
- van der Starre, P.J.; Kolz, M.; Lemmens, H.J.; Faix, J.D.; Mitchell, S.; Miller, C. Vancomycin plasma concentrations in cardiac surgery with the use of profound hypothermic circulatory arrest. Eur. J. Cardio-Thoracic Surg. 2010, 38, 741–744. [Google Scholar] [CrossRef]
- Triginer, C.; Izquierdo, I.; Fernández, R.; Rello, J.; Torrent, J.; Benito, S.; Net, A. Gentamicin volume of distribution in critically ill septic patients. Intensive Care Med. 1990, 16, 303–306. [Google Scholar] [CrossRef]
- Tang, G.J.; Tang, J.J.; Lin, B.S.; Kong, C.W.; Lee, T.Y. Factors affecting gentamicin pharmacokinetics in septic patients. Acta Anaesthesiol. Scand. 1999, 43, 726–730. [Google Scholar] [CrossRef]
- Rebuck, J.A.; Fish, D.N.; Abraham, E. Pharmacokinetics of Intravenous and Oral Levofloxacin in Critically Ill Adults in a Medical Intensive Care Unit. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2002, 22, 1216–1225. [Google Scholar] [CrossRef]
- Belzberg, H.; Zhu, J.; Cornwell, E.E.; Murray, J.A.; Sava, J.; Salim, A.; Velmahos, G.C.; Gill, M.A. Imipenem Levels Are Not Predictable in the Critically Ill Patient. J. Trauma: Inj. Infect. Crit. Care 2004, 56, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.S.; Gandarillas, C.-I.C.; Lerma, F.A.; Menacho, Y.A.; Domínguez-Gil, A. Pharmacokinetics and Pharmacodynamics of Levofloxacin in Intensive Care Patients. Clin. Pharmacokinet. 2005, 44, 627–635. [Google Scholar] [CrossRef]
- van Zanten, A.R.; Polderman, K.H.; van Geijlswijk, I.M.; van der Meer, G.Y.; Schouten, M.A.; Girbes, A.R. Ciprofloxacin pharmacokinetics in critically ill patients: A prospective cohort study. J. Crit. Care 2008, 23, 422–430. [Google Scholar] [CrossRef]
- Brink, A.; Richards, G.; Schillack, V.; Kiem, S.; Schentag, J. Pharmacokinetics of once-daily dosing of ertapenem in critically ill patients with severe sepsis. Int. J. Antimicrob. Agents 2008, 33, 432–436. [Google Scholar] [CrossRef]
- Chapuis, T.M.; Giannoni, E.; A Majcherczyk, P.; Chioléro, R.; Schaller, M.-D.; Berger, M.M.; Bolay, S.; A Décosterd, L.; Bugnon, D.; Moreillon, P. Prospective monitoring of cefepime in intensive care unit adult patients. Crit. Care 2010, 14, R51. [Google Scholar] [CrossRef] [PubMed]
- Aubron, C.; Corallo, C.E.; Nunn, M.O.; Dooley, M.J.; Cheng, A.C. Evaluation of the Accuracy of a Pharmacokinetic Dosing Program in Predicting Serum Vancomycin Concentrations in Critically Ill Patients. Ann. Pharmacother. 2011, 45, 1193–1198. [Google Scholar] [CrossRef]
- Chung, J.; Oh, J.M.; Cho, E.M.; Jang, H.J.; Hong, S.B.; Lim, C.M.; Koh, Y.S. Optimal Dose of Vancomycin for Treating Methicillin-Resistant Staphylococcus Aureus Pneumonia in Critically Ill Patients. Anaesth. Intensive Care 2011, 39, 1030–1037. [Google Scholar] [CrossRef]
- Karnik, N.D.; Sridharan, K.; Jadhav, S.P.; Kadam, P.P.; Naidu, R.K.; Namjoshi, R.D.; Gupta, V.; Gore, M.S.; Surase, P.V.; Mehta, P.R.; et al. Pharmacokinetics of colistin in critically ill patients with multidrug-resistant Gram-negative bacilli infection. Eur. J. Clin. Pharmacol. 2013, 69, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Koegelenberg, C.F.N.; Nortje, A.; Lalla, U.; Enslin, A.; Irusen, E.M.; Rosenkranz, B.; I Seifart, H.; Bolliger, C.T. The pharmacokinetics of enteral antituberculosis drugs in patients requiring intensive care. South Afr. Med. J. 2013, 103, 394–398. [Google Scholar] [CrossRef]
- de Montmollin, E.; Bouadma, L.; Gault, N.; Mourvillier, B.; Mariotte, E.; Chemam, S.; Massias, L.; Papy, E.; Tubach, F.; Wolff, M.; et al. Predictors of insufficient amikacin peak concentration in critically ill patients receiving a 25 mg/kg total body weight regimen. Intensive Care Med. 2014, 40, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Takasu, O.; Sakai, Y.; Sakamoto, T.; Yamashita, N.; Mori, S.; Morita, T.; Nabeta, M.; Hirayu, N.; Yoshiyama, N.; et al. Development of a teicoplanin loading regimen that rapidly achieves target serum concentrations in critically ill patients with severe infections. J. Infect. Chemother. 2015, 21, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Lipman, J.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Dulhunty, J.; Kaukonen, K.-M.; Koulenti, D.; Martin, C.; et al. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J. Antimicrob. Chemother. 2015, 71, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Zander, J.; Döbbeler, G.; Nagel, D.; Maier, B.; Scharf, C.; Huseyn-Zada, M.; Jung, J.; Frey, L.; Vogeser, M.; Zoller, M. Piperacillin concentration in relation to therapeutic range in critically ill patients—A prospective observational study. Crit. Care 2016, 20, 79. [Google Scholar] [CrossRef]
- Allou, N.; Charifou, Y.; Augustin, P.; Galas, T.; Valance, D.; Corradi, L.; Martinet, O.; Vandroux, D.; Allyn, J. A study to evaluate the first dose of gentamicin needed to achieve a peak plasma concentration of 30 mg/l in patients hospitalized for severe sepsis. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1187–1193. [Google Scholar] [CrossRef]
- Obara, V.Y.; Zacas, C.P.; Carrilho, C.M.D.d.M.; Delfino, V.D.A. Currently used dosage regimens of vancomycin fail to achieve therapeutic levels in approximately 40% of intensive care unit patients. Rev. Bras. Ter. Intensive 2016, 28, 380–386. [Google Scholar] [CrossRef]
- Bakke, V.; Sporsem, H.; Von der Lippe, E.; Nordøy, I.; Lao, Y.; Nyrerød, H.C.; Sandvik, L.; Hårvig, K.R.; Bugge, J.F.; Helset, E. Vancomycin levels are frequently subtherapeutic in critically ill patients: A prospective observational study. Acta Anaesthesiol. Scand. 2017, 61, 627–635. [Google Scholar] [CrossRef]
- Ruiz, J.; Ramirez, P.; Company, M.J.; Gordon, M.; Villarreal, E.; Concha, P.; Aroca, M.; Frasquet, J.; Remedios-Marqués, M.; Castellanos-Ortega. Impact of amikacin pharmacokinetic/pharmacodynamic index on treatment response in critically ill patients. J. Glob. Antimicrob. Resist. 2018, 12, 90–95. [Google Scholar] [CrossRef]
- Burger, R.; Guidi, M.; Calpini, V.; Lamoth, F.; Decosterd, L.; Robatel, C.; Buclin, T.; Csajka, C.; Marchetti, O. Effect of renal clearance and continuous renal replacement therapy on appropriateness of recommended meropenem dosing regimens in critically ill patients with susceptible life-threatening infections. J. Antimicrob. Chemother. 2018, 73, 3413–3422. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Xie, J.; Liu, L.; Liu, S.; Guo, F.; Qiu, H.; Yang, Y. Association Between Pathophysiology and Volume of Distribution Among Patients With Sepsis or Septic Shock Treated With Imipenem: A Prospective Cohort Study. J. Infect. Dis. 2020, 221, S272–S278. [Google Scholar] [CrossRef]
- Helset, E.; Nordøy, I.; Sporsem, H.; Bakke, V.D.; Bugge, J.F.; Gammelsrud, K.W.; Zucknick, M.; Lippe, E.; von der Lippe, E. Factors increasing the risk of inappropriate vancomycin therapy in ICU patients: A prospective observational study. Acta Anaesthesiol. Scand. 2020, 64, 1295–1304. [Google Scholar] [CrossRef]
- Ram, K.; Sheikh, S.; Bhati, R.K.; Tripathi, C.D.; Suri, J.C.; Meshram, G.G. Steady-state pharmacokinetic and pharmacodynamic profiling of colistin in critically ill patients with multi-drug-resistant gram-negative bacterial infections, along with differences in clinical, microbiological and safety outcome. Basic Clin. Pharmacol. Toxicol. 2021, 128, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Hou, Y.; Li, J.; Gao, Y.; Li, R.; Jin, X.; Zhang, J.; Wang, X.; Wang, G. An evaluation on the association of vancomycin trough concentration with mortality in critically ill patients: A multicenter retrospective study. Clin. Transl. Sci. 2021, 14, 1780–1790. [Google Scholar] [CrossRef]
- Niibe, Y.; Suzuki, T.; Yamazaki, S.; Uchida, M.; Suzuki, T.; Takahashi, N.; Hattori, N.; Nakada, T.-A.; Ishii, I. Identification of factors affecting meropenem pharmacokinetics in critically ill patients: Impact of inflammation on clearance. J. Infect. Chemother. 2022, 28, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Mitton, B.; Paruk, F.; Gous, A.; Chausse, J.; Milne, M.; Becker, P.; Said, M. Evaluating the usefulness of the estimated glomerular filtration rate for determination of imipenem dosage in critically ill patients. South Afr. Med J. 2022, 112, 765–768. [Google Scholar] [CrossRef]
- Helset, E.; Cheng, V.; Sporsem, H.; Thorstensen, C.; Nordøy, I.; Gammelsrud, K.W.; Hanssen, G.; Ponzi, E.; Lipman, J.; von der Lippe, E. Meropenem pharmacokinetic/pharmacodynamic target attainment and clinical response in ICU patients: A prospective observational study. Acta Anaesthesiol. Scand. 2024, 68, 502–511. [Google Scholar] [CrossRef]
- Lejbman, I.A.; Torisson, G.; Resman, F.; Sjövall, F. Beta-lactam antibiotic concentrations in critically ill patients with standard and adjusted dosages: A prospective observational study. Acta Anaesthesiol. Scand. 2024, 68, 530–537. [Google Scholar] [CrossRef]
- Beckhouse, M.J.; Whyte, I.M.; Byth, P.L.; Napier, J.C.; Smith, A.J. Altered Aminoglycoside Pharmacokinetics in the Critically Ill. Anaesth. Intensive Care 1988, 16, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Zeitlinger, B.S.; Zeitlinger, M.; Leitner, I.; Müller, M.; Joukhadar, C. Clinical Scoring System for the Prediction of Target Site Penetration of Antimicrobials in Patients with Sepsis. Clin. Pharmacokinet. 2007, 46, 75–83. [Google Scholar] [CrossRef]
- Cristallini, S.; Hites, M.; Kabtouri, H.; Roberts, J.A.; Beumier, M.; Cotton, F.; Lipman, J.; Jacobs, F.; Vincent, J.-L.; Creteur, J.; et al. New Regimen for Continuous Infusion of Vancomycin in Critically Ill Patients. Antimicrob. Agents Chemother. 2016, 60, 4750–4756. [Google Scholar] [CrossRef]
- Ehmann, L.; Zoller, M.; Minichmayr, I.K.; Scharf, C.; Maier, B.; Schmitt, M.V.; Hartung, N.; Huisinga, W.; Vogeser, M.; Frey, L.; et al. Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients: A prospective observational study. Crit. Care 2017, 21, 263. [Google Scholar] [CrossRef] [PubMed]
- Coste, A.; Deslandes, G.; Jalin, L.; Corvec, S.; Caillon, J.; Boutoille, D.; Grégoire, M.; Bretonnière, C. PK/PD targets of amikacin and gentamicin in ICU patients. Med. Et Mal. Infect. 2019, 50, 709–714. [Google Scholar] [CrossRef]
- Logre, E.; Enser, M.; Tanaka, S.; Dubert, M.; Claudinon, A.; Grall, N.; Mentec, H.; Montravers, P.; Pajot, O. Amikacin pharmacokinetic/pharmacodynamic in intensive care unit: A prospective database. Ann. Intensive Care 2020, 10, 75. [Google Scholar] [CrossRef]
- De Corte, T.; Verhaeghe, J.; Dhaese, S.; Van Vooren, S.; Boelens, J.; Verstraete, A.G.; Stove, V.; Ongenae, F.; De Bus, L.; Depuydt, P.; et al. Pathogen-based target attainment of optimized continuous infusion dosing regimens of piperacillin-tazobactam and meropenem in surgical ICU patients: A prospective single center observational study. Ann. Intensive Care 2023, 13, 35. [Google Scholar] [CrossRef]
- Guilhaumou, R.; Chevrier, C.; Setti, J.L.; Jouve, E.; Marsot, A.; Julian, N.; Blin, O.; Simeone, P.; Lagier, D.; Mokart, D.; et al. β-Lactam Pharmacokinetic/Pharmacodynamic Target Attainment in Intensive Care Unit Patients: A Prospective, Observational, Cohort Study. Antibiotics 2023, 12, 1289. [Google Scholar] [CrossRef]
- El-Haffaf, I.; Marsot, A.; Hachemi, D.; Pesout, T.; Williams, V.; Smith, M.-A.; Albert, M.; Williamson, D. Exposure levels and target attainment of piperacillin/tazobactam in adult patients admitted to the intensive care unit: A prospective observational study. Can. J. Anaesth. 2024, 71, 511–522. [Google Scholar] [CrossRef]
- Campassi, M.L.; Gonzalez, M.C.; Masevicius, F.D.; Vazquez, A.R.; Moseinco, M.; Navarro, N.C.; Previgliano, L.; Rubatto, N.P.; Benites, M.H.; Estenssoro, E.; et al. Augmented renal clearance in critically ill patients: Incidence, associated factors and effects on vancomycin treatment. Rev. Bras. Ter. Intensive 2014, 26, 13–20. [Google Scholar] [CrossRef]
- Zeng, J.; Leng, B.; Guan, X.; Jiang, S.; Xie, M.; Zhu, W.; Tang, Y.; Zhang, L.; Sha, J.; Wang, T.; et al. Comparative pharmacokinetics of polymyxin B in critically ill elderly patients with extensively drug-resistant gram-negative bacteria infections. Front. Pharmacol. 2024, 15, 1347130. [Google Scholar] [CrossRef] [PubMed]
- Frazee, E.; Rule, A.D.; Lieske, J.C.; Kashani, K.B.; Barreto, J.N.; Virk, A.; Kuper, P.J.; Dierkhising, R.A.; Leung, N. Cystatin C–Guided Vancomycin Dosing in Critically Ill Patients: A Quality Improvement Project. Am. J. Kidney Dis. 2017, 69, 658–666. [Google Scholar] [CrossRef]
- You, X.; Dai, Q.; Hu, J.; Yu, M.; Wang, X.; Weng, B.; Cheng, L.; Sun, F. Therapeutic drug monitoring of imipenem/cilastatin and meropenem in critically ill adult patients. J. Glob. Antimicrob. Resist. 2024, 36, 252–259. [Google Scholar] [CrossRef]
- Huang, F.; Cao, W.-X.; Yan, Y.-Y.; Mao, T.-T.; Wang, X.-W.; Huang, D.; Qiu, Y.-S.; Lu, W.-J.; Li, D.-J.; Zhuang, Y.-G. Influence of continuous renal replacement therapy on the plasma concentration of tigecycline in patients with septic shock: A prospective observational study. Front. Pharmacol. 2023, 14, 1118788. [Google Scholar] [CrossRef]
- Poli, E.C.; Simoni, C.; André, P.; Buclin, T.; Longchamp, D.; Perez, M.-H.; Ferry, T.; Schneider, A.G. Clindamycin clearance during Cytosorb® hemoadsorption: A case report and pharmacokinetic study. Int. J. Artif. Organs 2019, 42, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Dimski, T.; Brandenburger, T.; MacKenzie, C.; Kindgen-Milles, D. Elimination of glycopeptide antibiotics by cytokine hemoadsorption in patients with septic shock: A study of three cases. Int. J. Artif. Organs 2020, 43, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Köhler, T.; Schwier, E.; Kirchner, C.; Winde, G.; Henzler, D.; Eickmeyer, C. Hemoadsorption with CytoSorb® and the early course of linezolid plasma concentration during septic shock. J. Artif. Organs 2021, 25, 86–90. [Google Scholar] [CrossRef]
- Liebchen, U.; Scharf, C.; Zoller, M.; Weinelt, F.; Kloft, C.; the CytoMero Collaboration Team; Michelet, R.; Schroeder, I.; Paal, M.; Vogeser, M.; et al. No clinically relevant removal of meropenem by cytokine adsorber CytoSorb® in critically ill patients with sepsis or septic shock. Intensive Care Med. 2021, 47, 1332–1333. [Google Scholar] [CrossRef]
Number of Studies | Number of Patients | ||
---|---|---|---|
Number of Centers | Unicentric | 222 | 11,342 |
Multicentric | 34 | 10,157 | |
Study Design | Prospective observational | 246 | 21,089 |
RCT | 10 | 411 | |
Outcome type | Exposure | 113 | 15,702 |
PKPOP | 101 | 4628 | |
PK | 42 | 1170 | |
Type of analysis | Subgroup | 102 | 4827 |
Subgroup and PKPOP | 62 | 2093 | |
Risk factor, no PKPOP | 53 | 12,045 | |
Risk factor and PKPOP | 39 | 2535 | |
Distribution of studies by area | Europe | 125 | 7036 |
North America | 39 | 9303 | |
East Asia | 39 | 2707 | |
Oceania | 21 | 700 | |
South Asia | 9 | 335 | |
South America | 8 | 689 | |
Africa | 5 | 187 | |
More than one area | 5 | 493 | |
Middle East | 1 | 43 | |
Publication year | 1988–1996 (9 years) | 5 | 117 |
1997–2005 (9 years) | 16 | 445 | |
2006–2014 (9 years) | 43 | 1997 | |
2015–2024 (9.2 years) | 192 | 18,941 | |
Antibiotic group evaluated | More than two antibiotic groups | 6 | 256 |
Aminoglycosides | 20 | 1767 | |
Antituberculous | 1 | 10 | |
Beta lactams | 137 | 7395 | |
Daptomycin | 4 | 101 | |
Linezolid | 23 | 643 | |
Polimyxins | 7 | 207 | |
Quinolones | 11 | 258 | |
Teicoplanin | 7 | 416 | |
Tigecycline | 4 | 89 | |
Vancomycin | 42 | 10,602 |
Antibiotic Group | Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Risk Factor/Primary Outcome | Amino-Glycosides | B-Lactams 2 | B-Lactams Vancomycin | Daptomycin | Linezolid 2 | Polymyxins | Quinolone | Teicoplanin | Tigecycline | Vancomycin | Other 1 | Number of Studies |
Age | 1/10 (10.0) | 9/80 (11.3) | 0/1 (0) | 0/2 (0) | 0/11 (0) | 1/4 (25.0) | 2/9 (22.2) | 1/4 (25.0) | 0/3(0) | 3/16 (18.8) | 0 | 17/139 (12.2) |
Exposure | 1/5 (20.0) | 3/20 (15.0) | 0/1 (0) | 0/1 (0) | 0/1 (0) | 1/3 (33.3) | 1/2 (50.0) | 1/2(50.0) | 0 | 1/6 (16.7) | 0 | 8/41 (19.5) |
PK/PKPOP | 0/5 (0) | 6/60 (10.0) | 0 | 0/1 (0) | 0/10 (0) | 0/1 (0) | 1/7 (14.3) | 0/2 (0) | 0/3(0) | 2/10 (20.0) | 0 | 9/98 (9.2) |
Sex | 0/8 (0) | 4/68 (5.9) | 0 | 0/2 (0) | 0/8 (0) | 0/3 (0) | 2/6 (33.3) | 0/3 (0) | 0/3 (0) | 0/15 (0) | 0 | 6/115 (5.2) |
Exposure | 0/4 (0) | 1/15 (6.7) | 0 | 0/1 (0) | 0 | 0/2 (0) | 2/2 (100) | 0/1 (0) | 0 | 0/6 (0) | 0 | 3/31 (9.7) |
PK/PKPOP | 0/4 (0) | 3/53 (5.7) | 0 | 0/1 (0) | 0/8 (0) | 0/1 (0) | 0/4 (0) | 0/2 (0) | 0/3 (0) | 0/9 (0) | 0 | 3/84 (3.6) |
Weight | 5/7 (71.4) | 30/88 (34.1) | 0/1 | 0/2 (0) | 6/12 (50.0) | 2/6 (33.3) | 4/8 (50.0) | 1/3 (33.3) | 2/3 (66.7) | 8/17 (47.1) | 0 | 57/146 (39.0) |
Exposure | 1/2 (50.0) | 6/22 (27.3) | 0/1 | 0/1 (0) | 1/2 (50.0) | 2/4 (50.0) | 1/2 (50.0) | 0/1 (0) | 0 | 3/5 (60.0) | 0 | 14/40 (35.0) |
PK/PKPOP | 4/5 (80.0) | 24/66 (36.4) | 0 | 0/1 (0) | 5/10 (50.0) | 0/2 (0) | 3/6 (50.0) | 1/2 (50.0) | 2/3 (66.7) | 5/12 (41.7) | 0 | 43/106 (40.6) |
Renal function | 8/11 (72.7) | 74/98 (75.5) | 2/2 (100) | 1/2 (50.0) | 8/13 (61.5) | 3/5 (60.0) | 6/8 (75.0) | 3/4 (75.0) | 0/2 (0) | 18/24 (75.0) | 2/2 (100) | 125/170 (73.5) |
Exposure | 4/5 (80.0) | 24/30 (80.0) | 2/2 (100) | 0/1 (0) | 1/2 (50.0) | 2/3 (66.7) | 2/3 (66.7) | 1/1 (100) | 0 | 10/12 (83.3) | 2/2 (100) | 48/61 (78.7) |
PK/PKPOP | 4/6 (66.7) | 50/68 (73.5) | 0 | 1/1 (100) | 7/11 (63.6) | 1/2 (50.0) | 4/5 (80.0) | 2/3 (66.7) | 0/2 (0) | 8/12 (66.7) | 0 | 77/109 (70.6) |
Renal replacement | 3/7 (42.9) | 22/50 (44.0) | 2/3 (66.7) | 3/3 (100) | 5/14 (35.7) | 2/2 (100) | 0/5 (0) | 3/5 (60.0) | 1/3 (33.3) | 13/17 (76.5) | 3/3 (100) | 57/110 (51.8) |
Exposure | 1/4 (25.0) | 9/21 (42.9) | 1/2 (50.0) | 1/1 (100) | 2/4 (50.0) | 1/1 (100) | 0 | 2/2 (100) | 1/1 (100) | 7/9 (77.8) | 1/1 (100) | 26/45 (57.8) |
PK/PKPOP | 2/3 (66.7) | 13/29 (44.8) | 1/1 (100) | 2/2 (100) | 3/10 (30.0) | 1/1 (100) | 0/5 (0) | 1/3 (33.3) | 0/2 (0) | 6/8 (75.0) | 2/2 (100) | 31/65 (47.7) |
Protein or albumin | 1/4 (25.0) | 10/49 (20.4) | 0/1 (0) | 0/1 (0) | 0/2 (0) | 1/4 (25.0) | 0/1 (0) | 1/2 (50.0) | 0/2 (0) | 2/4 (50.0) | 0 | 15/70 (21.4) |
Exposure | 0/2 (0) | 1/10 (10.0) | 0/1 (0) | 0 | 0 | 1/2 (50.0) | 0 | 1/1 (100) | 0 | 1/1 (100) | 0 | 4/17 (23.5) |
PK/PKPOP | 1/2 (50.0) | 9/39 (23.1) | 0 | 0/1 (0) | 0/2 (0) | 0/2 (0) | 0/1 (0) | 0/1 (0) | 0/2 (0) | 1/3 (33.3) | 0 | 11/53 (20.8) |
APACHE or SAPS | 2/6 (33.3) | 5/46 (10.9) | 0/1 (0) | 0/1 (0) | 0/6 (0) | 0/2 (0) | 1/3 (33.3) | 1/2 (50.0) | 0/1 (0) | 1/11 (9.1) | 1/2 (50.0) | 11/81 (13.6) |
Exposure | 2/4 (50.0) | 3/14 (21.4) | 0/1 (0) | 0 | 0/1 (0) | 0/1 (0) | 0 | 1/1 (100) | 0 | 1/6 (16.7) | 1/2 (50.0) | 8/30 (26.7) |
PK/PKPOP | 0/2 (0) | 2/32 (6.3) | 0 | 0/1 (0) | 0/5 (0) | 0/1 (0) | 1/3 (33.3) | 0/1 (0) | 0/1 (0) | 0/5 (0) | 0 | 3/51 (5.9) |
SOFA score | 2/5 (40.0) | 5/46 (10.9) | 1/1 (100) | 0 | 1/5 (20.0) | 0/2 (0) | 1/3 (33.3) | 0 | 0/1 (0) | 1/10 (10.0) | 0/1 (0) | 11/74 (14.9) |
Exposure | 2/3 (66.7) | 4/13 (30.8) | 1/1 (100) | 0 | 0 | 0/2 (0) | 1/1 (100) | 0 | 0 | 0/4 (0) | 0/1 (0) | 8/25 (32.0) |
PK/PKPOP | 0/2 (0) | 1/33 (3.0) | 0 | 0 | 1/5 (20.0) | 0 | 0/2 (0) | 0 | 0/1 (0) | 1/6 (16.7) | 0 | 3/49 (6.1) |
Hepatic function | 1/3 (33.3) | 1/23 (4.3) | 0 | 0/1 (0) | 5/8 (62.5) | 0/3 (0) | 2/6 (33.3) | 0 | 1/1 (100) | 0/3 (0) | 1/1 (100) | 11/49 (22.4) |
Exposure | 1/2 (50.0) | 1/3 (33.3) | 0 | 0 | 0 | 0/2 (0) | 0/2 (0) | 0 | 0 | 0/1 (0) | 1/1 (100) | 3/11 (27.3) |
PK/PKPOP | 0/1 (0) | 0/20 (0) | 0 | 0/1 (0) | 5/8 (62.5) | 0/1 (0) | 2/4 (50.0) | 0 | 1/1 (100) | 0/2 (0) | 0 | 8/38 (21.1) |
Sepsis/shock | 1/6 (16.7) | 7/39 (17.9) | 0 | 0 | 1/2 (50.0) | 0 | 0/3 (0) | 0 | 0 | 2/11 (18.2) | 1/2 (50.0) | 12/63 (19.0) |
Exposure | 0/3 (0) | 3/13 (23.1) | 0 | 0 | 1/1 (100) | 0 | 0/1 (0) | 0 | 0 | 2/7 (28.6) | 1/2 (50.0) | 7/27 (25.9) |
PK/PKPOP | 1/3 (33.3) | 4/26 (15.4) | 0 | 0 | 0/1 (0) | 0 | 0/2 (0) | 0 | 0 | 0/4 (0) | 0 | 5/36 (13.9) |
Admission Diagnosis | 0/1 (0) | 1/17 (5.9) | 0/1 (0) | 0/1 (0) | 1/2 (50.0) | 0 | 0 | 0/1 (0) | 0 | 0/7 (0) | 0 | 2/30 (6.7) |
Exposure | 0/1 (0) | 1/6 (16.7) | 0/1 (0) | 0/1 (0) | 0/1 (0) | 0 | 0 | 0/1 (0) | 0 | 0/4 (0) | 0 | 1/15 (6.7) |
PK/PKPOP | 0 | 0/11 (0) | 0 | 0 | 1/1 (100) | 0 | 0 | 0 | 0 | 0/3 (0) | 0 | 1/15 (6.7) |
Trauma | 1/1 (100) | 3/5 (60.0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1/3 (33.3) | 0 | 5/9 (55.6) |
Exposure | 1/1 (100) | 0/2 (0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1/3 (33.3) | 0 | 2/6 (33.3) |
PK/PKPOP | 0 | 3/3 (100) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3/3 (100) |
Burn | 2/2 (100) | 6/9 (66.7) | 0 | 0 | 0/1 (0) | 0 | 0 | 0 | 0 | 0/1 (0) | 0 | 8/13 (61.5) |
Exposure | 1/1 (100) | 5/6 (83.3) | 0 | 0 | 0/1 (0) | 0 | 0 | 0 | 0 | 0 | 0 | 6/8 (75.0) |
PK/PKPOP | 1/1 (100) | 1/3 (33.3) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0/1 (0) | 0 | 2/5 (40.0) |
ECMO | 1/2 (50.0) | 6/14 (42.9) | 0 | 0/1 (0) | 2/2 (100) | 0 | 0/2 (0) | 0 | 0/1 (0) | 1/2 (50.0) | 2/2 (100) | 11/25 (44.0) |
Exposure | 0/1 (0) | 1/5 (20.0) | 0 | 0/1 (0) | 2/2 (100) | 0 | 0 | 0 | 0 | 1/1 (100) | 2/2 (100) | 5/11 (45.5) |
PK/PKPOP | 1/1 (100) | 5/9 (55.6) | 0 | 0 | 0 | 0 | 0/2 (0) | 0 | 0/1 (0) | 0/1 (0) | 0 | 6/14 (42.9) |
Mechanical ventilation | 0/4 (0) | 1/14 (7.1) | 0 | 0 | 0 | 0 | 1/1 (100) | 0 | 0 | 1/5 (20.0) | 0 | 3/24 (12.5) |
Exposure | 0/3 (0) | 0/4 (0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1/4 (25.0) | 0 | 1/11 (9.1) |
PK/PKPOP | 0/1 (0) | 1/10 (10.0) | 0 | 0 | 0 | 0 | 1/1 (100) | 0 | 0 | 0/1 (0) | 0 | 2/13 (15.4) |
pH parameters | 0 | 1/3 (33.3) | 0 | 0 | 1/1 (100) | 0 | 1/1 (100) | 0/1 (0) | 0 | 0 | 1/1 (100) | 4/7 (57.1) |
Exposure | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0/1 (0) | 0 | 0 | 1/1 (100) | 1/2 (50.0) |
PK/PKPOP | 0 | 1/3 (33.3) | 0 | 0 | 1/1 (100) | 0 | 1/1 (100) | 0 | 0 | 0 | 0 | 3/5 (60.0) |
Acute reactants | 1/3 (33.3) | 3/19 (15.8) | 0 | 0/1 (0) | 0/1 (0) | 0 | 0 | 0/1 (0) | 0/1 (0) | 0/2 (0) | 0 | 4/28 (14.3) |
Exposure | 1/2 (50.0) | 1/4 (25.0) | 0 | 0 | 0 | 0 | 0 | 0/1 (0) | 0 | 0/1 (0) | 0 | 2/8 (25.0) |
PK/PKPOP | 0/1 (0) | 2/15 (13.3) | 0 | 0/1 (0) | 0/1 (0) | 0 | 0 | 0 | 0/1 (0) | 0/1 (0) | 0 | 2/20 (10.0) |
Hemoglobin/hematocrit | 0/2 (0) | 1/7 (14.3) | 0 | 0/2 (0) | 0/1 (0) | 1/1 (100) | 0 | 0 | 0 | 0/1 (0) | 0 | 2/14 (14.3) |
Exposure | 0/1 (0) | 0/1 (0) | 0 | 0/1 (0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0/3 (0) |
PK/PKPOP | 0/1 (0) | 1/6 (16.7) | 0 | 0/1 (0) | 0/1 (0) | 1/1 (100) | 0 | 0 | 0 | 0/1 (0) | 0 | 2/11 (18.2) |
Fluid balance | 1/4 (25.0) | 2/15 (13.3) | 0/1 (0) | 0 | 0 | 0 | 0/2 (0) | 0 | 0/2 (0) | 0/2 (0) | 0 | 3/26 (11.5) |
Exposure | 0/3 (0) | 1/3 (33.3) | 0/1 (0) | 0 | 0 | 0 | 0/1 (0) | 0 | 0 | 0/1 (0) | 0 | 1/9 (11.1) |
PK/PKPOP | 1/1 (100) | 1/12 (8.3) | 0 | 0 | 0 | 0 | 0/1 (0) | 0 | 0/2 (0) | 0/1 (0) | 0 | 2/17 (11.8) |
Comorbidities | 0/4 (0) | 3/14 (21.4) | 0 | 0/1 (0) | 0/1 (0) | 0/1 (0) | 0/2 (0) | 0 | 0 | 1/6 (16.7) | 0/1 (0) | 4/29 (13.8) |
Exposure | 0/4 (0) | 1/6 (16.7) | 0 | 0/1 (0) | 0 | 0/1 (0) | 0 | 0 | 0 | 1/2 (50.0) | 0/1 (0) | 2/15 (13.3) |
PK/PKPOP | 0 | 2/8 (25.0) | 0 | 0 | 0/1 (0) | 0 | 0/2 (0) | 0 | 0 | 0/4 (0) | 0 | 2/14 (14.3) |
Comedication | 0/1 (0) | 0/10 (0) | 0 | 1/1 (100) | 0 | 0/2 (0) | 1/2 (50.0) | 0 | 0 | 0/3 (0) | 0/1 (0) | 2/20 (10.0) |
Exposure | 0/1 (0) | 0/7 (0) | 0 | 1/1 (100) | 0 | 0/1 (0) | 0 | 0 | 0 | 0/1 (0) | 0/1 (0) | 1/12 (8.3) |
PK/PKPOP | 0 | 0/3 (0) | 0 | 0 | 0 | 0/1 (0) | 1/2 (50.0) | 0 | 0 | 0/2 (0) | 0 | 1/8 (12.5) |
Site of infection | 1/3 (33.3) | 3/21 (14.3) | 0 | 0/1 (0) | 1/4 (25.0) | 0/2 (0) | 0/2 (0) | 0/1 (0) | 0 | 0/3 (0) | 0 | 5/37 (13.5) |
Exposure | 0/1 (0) | 3/9 (33.3) | 0 | 0/1 (0) | 1/2 (50.0) | 0/1 (0) | 0/1 (0) | 0/1 (0) | 0 | 0/1 (0) | 0 | 4/17 (23.5) |
PK/PKPOP | 1/2 (50.0) | 0/12 (0) | 0 | 0 | 0/2 (0) | 0/1 (0) | 0/1 (0) | 0 | 0 | 0/2 (0) | 0 | 1/20 (5.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gras-Martín, L.; Plaza-Diaz, A.; Zarate-Tamames, B.; Vera-Artazcoz, P.; Torres, O.H.; Bastida, C.; Soy, D.; Ruiz-Ramos, J. Risk Factors Associated with Antibiotic Exposure Variability in Critically Ill Patients: A Systematic Review. Antibiotics 2024, 13, 801. https://doi.org/10.3390/antibiotics13090801
Gras-Martín L, Plaza-Diaz A, Zarate-Tamames B, Vera-Artazcoz P, Torres OH, Bastida C, Soy D, Ruiz-Ramos J. Risk Factors Associated with Antibiotic Exposure Variability in Critically Ill Patients: A Systematic Review. Antibiotics. 2024; 13(9):801. https://doi.org/10.3390/antibiotics13090801
Chicago/Turabian StyleGras-Martín, Laura, Adrián Plaza-Diaz, Borja Zarate-Tamames, Paula Vera-Artazcoz, Olga H. Torres, Carla Bastida, Dolors Soy, and Jesús Ruiz-Ramos. 2024. "Risk Factors Associated with Antibiotic Exposure Variability in Critically Ill Patients: A Systematic Review" Antibiotics 13, no. 9: 801. https://doi.org/10.3390/antibiotics13090801
APA StyleGras-Martín, L., Plaza-Diaz, A., Zarate-Tamames, B., Vera-Artazcoz, P., Torres, O. H., Bastida, C., Soy, D., & Ruiz-Ramos, J. (2024). Risk Factors Associated with Antibiotic Exposure Variability in Critically Ill Patients: A Systematic Review. Antibiotics, 13(9), 801. https://doi.org/10.3390/antibiotics13090801