Synthesis, Characterization, and Evaluation of the Antimicrobial Effects and Cytotoxicity of a Novel Nanocomposite Based on Polyamide 6 and Trimetaphosphate Nanoparticles Decorated with Silver Nanoparticles
Abstract
:1. Introduction
2. Results
2.1. Determination of Minimum Inhibitory Concentration (MIC)
2.2. Synthesis and Characterization of Silver and TMP Nanoparticles
2.3. Synthesis and Characterization of P6-TMP-AgNP Membranes
2.4. Surface Free Energy of Membranes
2.5. Release of Ag+ and TMP
2.6. Evaluation of the Antimicrobial Activity of Membranes
2.7. Evaluation of Cytotoxicity by MTT Assay
3. Discussion
4. Materials and Methods
4.1. Synthesis of AgNP and TMP Nanoparticles
4.2. Determination of the Minimum Inhibitory Concentration (MIC) of AgNPs
4.3. Preparation of P6 Membranes Containing TMP and Decorated with AgNPs
4.4. Characterization of TMP, AgNP, P6, P6-TMP, and P6-TMP-AgNP
4.5. Surface Free Energy of Membranes
4.6. Release of TMP and Ag+ from P6-TMP-AgNP Membranes
4.7. Evaluation of the Antimicrobial Activity of Membranes
4.7.1. Microorganism Strains and Growing Conditions
4.7.2. Determination of Inhibition Halo
4.7.3. Cell Viability Determination
4.8. Evaluation of the Cytotoxic Activity of PA6 and TMP-AgNP Nanocompounds
Evaluation of Cytotoxicity by MTT Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Brien, F.J. Biomaterials & Scaffolds for Tissue Engineering. Mater. Today 2011, 14, 88–95. [Google Scholar]
- Gu, L.; Gao, Y.; Qin, Y.; Chen, X.; Wang, X.; Wang, F. Biodegradable poly(carbonate-ethers) with thermoresponsive feature at body temperature. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 282. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Mousa, H.M.; Tiwari, A.P.; Ko, S.W.; Park, C.H.; Kim, C.S. Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application. Carbohydr. Polym. 2016, 148, 107. [Google Scholar] [CrossRef] [PubMed]
- Ávila Júnior, J.D.; Ávila, A.F.; Triplett, M.H. Caracterização morfológica de nanomembranas de poliamida-66 dopadas com grafeno obtidas por electrospinning. Polímeros 2012, 23, 74. [Google Scholar] [CrossRef]
- Joshi, M.K.; Tiwari, A.P.; Maharjan, B.; Won, K.S.; Kim, H.J.; Park, C.H.; Kim, C.S. Cellulose reinforced nylon-6 nanofibrous membrane: Fabrication strategies, physicochemical characterizations, wicking properties and biomimetic mineralization. Carbohydr. Polym. 2016, 147, 104. [Google Scholar] [CrossRef] [PubMed]
- Pant, H.R.; Kim, C.S. Biomimetic synthesis of hollow calcium phosphate nanospheres on core–shell structured electrospun calcium lactate/nylon-6 nanofibers. Mater. Lett. 2013, 92, 90. [Google Scholar] [CrossRef]
- Wintgens, V.; Dalmas, F.; Sebille, B.; Amiel, C. Novel phosphorus-containing cyclodextrin polymers and their affinity for calcium cations and hydroxyapatite. Carbohydr. Polym. 2013, 98, 896. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.S.; Kim, J.; Kim, Y.K.; Liu, Y.; Dickens, S.H.; Pashley, D.H.; Ling, J.Q.; Tay, F.R. A chemical phosphorylation-inspired design for type I collagen biomimetic remineralization. Dent. Mater. 2013, 26, 1077. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Kim, Y.K.; Liu, Y.; Ryou, H.; Wimmer, C.E.; Dai, L.; Arola, D.D.; Looney, S.W.; Pashley, D.H.; Tay, F.R. Biomimetic analogs for collagen biomineralization. J. Dent. Res. 2011, 90, 82. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, N.; Qi, Y.; Niu, L.N.; Elshafiy, S.; Mao, J.; Breschi, L.; Pashley, D.H.; Tay, F.R. The use of sodium trimetaphosphate as a biomimetic analog of matrix phosphoproteins for remineralization of artificial caries-like dentin. Dent. Mater. 2011, 27, 465. [Google Scholar] [CrossRef] [PubMed]
- Manna, C.M.; Nassar, M.Y.; Tofan, D.; Chakarawet, K.; Cummins, C.C. Facile synthesis of mononuclear early transition-metal complexes of kappa 3 cyclo-tetrametaphosphate ([P 4 O 12] 4–) and cyclo-trimetaphosphate ([P 3 O 9] 3–). Dalton Trans. 2014, 43, 1509. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M. Effect of trimetaphosphate ions on the process of mineralization. J. Dent. Res. 1971, 50, 1056–1064. [Google Scholar] [CrossRef]
- Favretto, C.O.; Delbem, A.C.B.; Moraes, J.C.S.; Camargo, E.R.; de Toledo, P.T.A.; Pedrini, D. Dentinal tubule obliteration using toothpastes containing sodium trimetaphosphate microparticles or nanoparticles. Clin. Oral Investig. 2018, 22, 3021–3029. [Google Scholar] [CrossRef] [PubMed]
- Neves, J.G.; Danelon, M.; Figueiredo, L.R.; Souza, J.A.S.; Pessan, J.P.; Delbem, A.C.B. Painel 29-Análise da energia livre de superfície no esmalte dentário após tratamento com hexametafosfato de sódio, cálcio e fosfato: Estudo in vitro. Arch. Health Investig. 2017, 5. [Google Scholar] [CrossRef]
- Harnett, E.M.; Alderman, J.; Wood, T. The surface energy of various biomaterials coated with adhesion molecules used in cell culture. Colloids Surf. B Biointerfaces 2007, 55, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Erem, A.D.; Ozcan, G.; Skrifvars, M.; Cakmak, M. In vitro assessment of antimicrobial activity and characteristics of polyamide 6/silver nanocomposite fibers. Fibers Polym. 2013, 14, 1415–1421. [Google Scholar] [CrossRef]
- Mendes-Gouvêa, C.C.; Do Amaral, J.G.; Fernandes, R.A.; Fernandes, G.L.; Gorup, L.F.; Camargo, E.R.; Delbem, A.C.B.; Barbosa, D.B. Sodium trimetaphosphate and hexametaphosphate impregnated with silver nanoparticles: Characteristics and antimicrobial efficacy. Biofouling 2018, 34, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Neto, F.N.S.; Morais, L.A.; Gorup, L.F.; Ribeiro, L.S.; Martins, T.J.; Hosida, T.Y.; Francatto, P.; Barbosa, D.B.; Camargo, E.R.; Delbem, A.C.B. Facile synthesis of PVP-Coated silver nanoparticles and evaluation of their physicochemical, antimicrobial and toxic activity. Colloids Interfaces 2023, 7, 66. [Google Scholar] [CrossRef]
- Haggerty, A.E.; Oudega, M. Biomaterials for spinal cord repair. Neurosci. Bull. 2013, 29, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Zadpoor, A.A. The evolution of biomaterials research. Mater. Today 2013, 16, 408–409. [Google Scholar] [CrossRef]
- Cavazana, T.P.; Hosida, T.Y.; Pessan, J.P.; Sampaio, C.; Monteiro, D.R.; Delbem, A.C.B. Activity of sodium trimetaphosphate, associated or not with fluoride, on dual-species biofilms. Biofouling 2019, 35, 718. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ren, S.; Li, L.; Zhou, Y.; Peng, W.; Xu, Y. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. J. Biomater. Appl. 2021, 36, 55–75. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.N.; Ren, G.; Young, K.; Pina, S.; Reis, R.L.; Oliveira, J.M. Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Adv. Funct. Mater. 2021, 31, 2010609. [Google Scholar] [CrossRef]
- Aytac, Z.; Dubey, N.; Daghrery, A.; Ferreira, J.A.; de Souza Araujo, I.J.; Castilho, M.; Malda, J.; Bottino, M.C. Innovations in Craniofacial Bone and Periodontal Tissue Engineering-from Electrospinning to Converged Biofabrication. Int. Mater. Rev. 2022, 67, 347–384. [Google Scholar] [CrossRef] [PubMed]
- Durán, N.; Durán, M.; Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity, nanomedicine: Nanotechnology. Biol. Med. 2016, 12, 789. [Google Scholar]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef]
- Perez-Diaz, M.A.; Boegli, L.; James, G.; Velasquillo, C.; Sanchez-Sanchez, R.; Martinez-Martinez, R.E.; Martinez-Castanon, G.A.; Martinez-Gutierrez, F. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 55, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Gorup, L.F.; Longo, E.; Leite, E.R.; Camargo, E.R. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the turkevich method. J. Colloid Interface Sci. 2011, 360, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Oh, S.G. Ostwald ripening and control of Ag ion reduction degree by ammonium hydroxide in alcohol reduction process. J. Ind. Eng. Chem. 2015, 21, 768–771. [Google Scholar] [CrossRef]
- Malanovic, N.; Lohner, K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim. Biophys. Acta 2016, 1858, 936–946. [Google Scholar] [CrossRef]
- Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; NabaVizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram positive and gram-negative bacteria: A preliminary study. J. Nanomater. 2015, 16, 53. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar Dash, S.; Das, B.; Chattopadhyay, S.; Ghosh, T.; Das, D.; Roy, S. Bio-fabricated silver nanoparticles preferentially targets gram positive depending on cell surface charge. Biomed. Pharmacother. 2016, 83, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Kreve, S.; Reis, A.C.D. Bacterial adhesion to biomaterials: What regulates this attachment? A review. Jpn. Dent. Sci. Rev. 2021, 57, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Della Volpe, C.; Siboni, S. Acid–base surface free energies of solids and the definition of scales in the Good–van Oss–Chaudhury theory. J. Adhes. Sci. Technol. 2000, 14, 235. [Google Scholar] [CrossRef]
- Matulevicius, J.; Kliucininkas, L.; Martuzevicius, D.; Krugly, E.; Tichonovas, M.; Baltrusaitis, J. Design and characterization of electrospun polyamide nanofiber media for air filtration applications. J. Nanomater. 2014, 1, 2014. [Google Scholar] [CrossRef]
- Pant, H.R.; Bajgai, M.P.; Yia, C.; Nirmala, R.; Nam, K.T.; Baek, W.-I.; Kim, H.Y. Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids Surf. A 2010, 370, 87. [Google Scholar] [CrossRef]
- Teimouri, R.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Surface modifications of scaffolds for bone regeneration. J. Mater. Res. Technol. 2023, 24, 7938–7973. [Google Scholar] [CrossRef]
- Shao, H.; Ma, M.; Wang, Q.; Yan, T.; Zhao, B.; Guo, S.; Tong, S. Advances in the superhydrophilicity-modified titanium surfaces with antibacterial and pro-osteogenesis properties: A review. Front. Bioeng. Biotechnol. 2022, 6, 1000401. [Google Scholar] [CrossRef] [PubMed]
- Leone, G.; Torricelli, P.; Giardino, R.; Barbucci, R. New phosphorylated derivatives of carboxymethylcellulose with osteogenic activity. Polym. Adv. Technol. 2008, 19, 824–830. [Google Scholar] [CrossRef]
- Li, X.; Chang, J. Preparation of bone-like apatite-collagen nanocomposites by a biomimetic process with phosphorylated collagen. J. Biomed. Mater. Res. A 2008, 85, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, G.; Lee, G.L.; Percival, S.L.; Mcbain, A.J. Combinatorial activities of ionic silver and sodium hexametaphosphate against microorganisms associated with chronic wounds. J. Antimicrob. Chemother. 2011, 66, 2556–2561. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.K.; Scherer, S.; Loessner, M.J. Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Appl. Environ. Microbiol. 1999, 65, 3942–3949. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Paredes-Sabja, D.; Sarker, M.R. Inhibitory effects of polyphosphates on Clostridium perfringens growth, sporulation and spore outgrowth. Food Microbiol. 2008, 25, 802–808. [Google Scholar] [CrossRef]
- Obritsch, J.A.; Ryu, D.; Lampila, L.E.; Bullerman, L.B. Antibacterial effects of long-chain polyphosphates on selected spoilage and pathogenic bacteria. J. Food Prot. 2008, 71, 1401–1405. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.J.; Ceri, H.; Yerly, J.; Rabiei, M.; Hu, Y.; Martinuzzi, R.; Turner, R.J. Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Appl. Environ. Microbiol. 2007, 73, 4940–4949. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale 2013, 5, 7328–7340. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.K.; Wen, W.W.; Smith, R.W. The effect of a long chain phosphate on the adsorption of collectors on kaolinite. Miner. Eng. 1993, 6, 1191–1197. [Google Scholar] [CrossRef]
- Dutra-Correa, M.; Leite, A.A.B.V.; de Cara, S.P.H.M.; Diniz, I.M.A.; Marques, M.M.; Suffredini, I.B.; Fernandes, M.S.; Toma, S.H.; Araki, K.; Medeiros, I.S. Antibacterial effects and cytotoxicity of an adhesive containing low concentration of silver nanoparticles. J. Dent. 2018, 77, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Danelon, M.; Pessan, J.P.; Souza-Neto, F.N.; Camargo, E.R.; Delbem, A.C.B. Effect of toothpaste with nano-sized trimetaphosphate on dental caries: In situ study. J. Dent. 2015, 43, 806. [Google Scholar] [CrossRef] [PubMed]
- Andre, R.S.; Pavinatto, A.; Mercante, L.A.; Paris, E.C.; Mattoso, L.H.C.; Correa, D.S. Improving the electrochemical properties of polyamide 6/polyaniline electrospun nanofibers by surface modification with ZnO nanoparticles. RSC Adv. 2015, 5, 73875. [Google Scholar] [CrossRef]
- Mi, H.Y.; Palumbo, S.; Jing, X.; Turng, L.S.; Li, W.J.; Peng, X.F. Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: Effects of polymer properties and particle size. J. Biomed. Mater. Res. B 2014, 102, 1434. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, T.; Hamad, H.; Ibrahim, E.; Mahmoud, O.; Al-Oufy, A. Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity. Ecotoxicol. Environ. 2018, 162, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Brittain, H.G. Chapter Four-Mid-Infrared Spectroscopy of Pharmaceutical Solids, Profiles of Drug Substances, Excipients and Related Methodology; Academic Press: Cambridge, MA, USA, 2018; Volume 43, pp. 321–358. [Google Scholar]
- Poulhazan, A.; Arnold, A.A.A.; Warschawski, D.E.; Marcotte, I. Unambiguous ex situ and in cell 2D 13C solid-state NMR characterization of starch and Its constituents. Int. J. Mol. Sci. 2008, 12, 3817. [Google Scholar] [CrossRef] [PubMed]
- Dongargaonkar, A.A.; Clogston, J.D. Quantitation of surface coating on nanoparticles using thermogravimetric analysis. In Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 57–63. [Google Scholar]
- Shen, B.; Zhang, D.; Wei, Y.; Zhao, Z.; Ma, X.; Zhao, X.; Wang, S.; Yang, W. Preparation of Ag doped keratin/PA6 nanofiber membrane with enhanced air filtration and antimicrobial properties. Polymers 2019, 9, 1511. [Google Scholar] [CrossRef]
- Jones, D.S.; Tian, Y.; Abu-Diak, O.; Andrews, G.P. Pharmaceutical applications of dynamic mechanical thermal analysis. Adv. Drug Deliv. Ver. 2012, 64, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Ajitha, B.; Kumar Reddy, Y.A.; Reddy, P.S.; Jeon, H.-J.; Ahn, C.W. Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Adv. 2016, 6, 36171. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, F.; Lavernia, E.J. On the analysis of grain size in bulk nanocrystalline materials via X-ray diffraction. Metall. Mater. Trans. A 2003, 34, 1349. [Google Scholar] [CrossRef]
- Ashizawa, K. Nanosize particle analysis by dynamic light scattering (DLS). Yakugaku Zasshi 2019, 139, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Van Der Mei, H.C.; White, D.J.; Kamminga-Rasker, H.J.; Knight, J.; Baig, A.A.; Smit, J.; Busscher, H.J. Influence of dietary components in saliva and dentifrices on the wettability of pellicle-coated enamel in vitro and in vivo. Eur. J. Oral Sci. 2002, 110, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Neves, J.G.; Danelon, M.; Pessan, J.P.; Figueiredo, L.R.; Camargo, E.R.; Delbem, A.C.B. Surface free energy of enamel treated with sodium hexametaphosphate, calcium and phosphate. Arch. Oral Biol. 2018, 90, 108–112. [Google Scholar] [CrossRef]
- Good, R.J. Contact angle, wetting, and adhesion: A critical review. J. Adhes. Sci. Technol. 1992, 6, 1269. [Google Scholar] [CrossRef]
- Van Oss, C.J. Acid-base interfacial interactions in aqueous media. Colloids Surf. A 1993, 78, 1. [Google Scholar] [CrossRef]
- Van Oss, C.J. Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surf. B 1995, 5, 91–110. [Google Scholar] [CrossRef]
- Chaudhury, M.K. Interfacial interaction between low-energy surfaces. Mater. Sci. Eng. 1996, 16, 97. [Google Scholar] [CrossRef]
- Della Volpe, C.; Siboni, S. Some reflections on acid–base solid surface free energy theories. J. Colloid Interface Sci. 1997, 195, 121. [Google Scholar] [CrossRef] [PubMed]
- Vogler, E.A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interfac. 1998, 74, 69–117. [Google Scholar] [CrossRef] [PubMed]
- Fiske, C.H.; Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem. 1925, 66, 375–400. [Google Scholar] [CrossRef]
- Fernandes, G.L.; Delbem, A.C.B.; Do Amaral, J.G.; Gorup, L.F.; Fernandes, R.A.; de Souza Neto, F.N.; Souza, J.A.S.; Monteiro, D.R.; Hunt, A.M.A.; Camargo, E.R.; et al. Nanosynthesis of silver-calcium glycerophosphate: Promising association against oral pathogens. Antibiotics 2018, 7, 52. [Google Scholar] [CrossRef]
- Amarante, V.O.Z.; Delbem, A.C.B.; Sampaio, C.; de Morais, L.A.; de Camargo, E.R.; Monteiro, D.R.; Pessan, J.P.; Hosida, T.Y. Activity of Sodium Trimetaphosphate Nanoparticles on Cariogenic-Related Biofilms In Vitro. Nanomaterials 2022, 30, 170. [Google Scholar] [CrossRef] [PubMed]
- Hosida, T.Y.; Cavazana, T.P.; Henriques, M.; Pessan, J.P.; Delbem, A.C.B.; Monteiro, D.R. Interactions between Candida albicans and Candida glabrata in biofilms: Influence of the strain type, culture medium and glucose supplementation. Mycoses 2018, 61, 270–278. [Google Scholar] [CrossRef]
Species | AgNPs with NH3 | AgNPs without NH3 | ||
---|---|---|---|---|
MIC (mg/mL) | MFC/MBC (mg/mL) | MIC (mg/mL) | MFC/MBC (mg/mL) | |
C. albicans ATCC 10231 | 9.40 | 300.94 | 9.40 | 300.94 |
S. mutans ATCC 25175 | 601.88 | 601.88 | 300.94 | 300.94 |
Nanofibers | Nano Ag | Surface Free Energy (mN/m) | ||||
---|---|---|---|---|---|---|
γs | γsLW | γsAB | γs+ | γs− | ||
P6 | Without | 41.2 a (2.2) | 48.0 a (1.2) | −6.8 a (1.8) | 0.6 a (0.3) | 22.7 a (3.6) |
P6-TMP-2.5% | 28.2 b (1.6) | 47.3 a (1.5) | −19.1 b (1.7) | 1.8 b (0.2) | 50.3 b (3.6) | |
P6-TMP-5% | 39.2 a (1.4) | 48.9 a (0.3) | −9.7 c (1.3) | 0.6 a (0.2) | 44.4 c (2.5) | |
P6-TMP-10% | 40.7 a (0.9) | 45.7 b (0.8) | −4.8 a (1.0) | 0.2 c (0.1) | 31.0 d (2.8) | |
P6 | With | 32.9 c (2.8) | 50.0 c (0.4) | −17.2 d (3.0) | 1.3 d (0.3) | 58.9 e (5.0) |
P6-TMP-2.5% | 36.0 d (4.0) | 48.2 a (1.2) | −12.3 e (5.0) | 0.9 e (0.7) | 48.0 b (4.5) | |
P6-TMP-5% | 39.1 e,a (2.0) | 48.3 a (1.2) | −9.2 c (2.9) | 0.5 a (0.2) | 49.1 f (4.1) | |
P6-TMP-10% | 41.5 e,a (2.6) | 45.4 b (1.7) | −3.9 a (2.4) | 0.1 c (0.0) | 39.0 g (3.6) |
Nanofibers | Nano Ag | Total Free Energy of Interaction (mN/m) | ||
---|---|---|---|---|
ΔGswsTotal | ΔGswsLW | ΔGswsAB | ||
P6 | Without | −15.3 a (6.1) | −10.2 a.b (0.8) | −5.1 a (6.5) |
P6-TMP-2.5% | 20.4 b (3.4) | −9.7 b (0.9) | 30.2 b (3.4) | |
P6-TMP-5% | 16.9 b (3.0) | −10.8 a (0.2) | 27.7 b (3.1) | |
P6-TMP-10% | 0.9 c (4.6) | −8.6 c (0.5) | 9.5 c (4.4) | |
P6 | With | 29.5 d (3.6) | −11.6 d (0.2) | 41.1 d (3.7) |
P6-TMP-2.5% | 20.8 b,e (5.6) | −10.4 b (0.8) | 31.1 b,e (5.5) | |
P6-TMP-5% | 23.7 e (4.2) | −10.4 a,b (0.8) | 34.1 e (4.3) | |
P6-TMP-10% | 13.9 f (5.2) | −8.6 c (1.1) | 22.5 f (4.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Morais, L.A.; Souza Neto, F.N.d.; Hosida, T.Y.; dos Santos, D.M.; de Almeida, B.C.; Frollini, E.; Filho, S.P.C.; Barbosa, D.d.B.; de Camargo, E.R.; Delbem, A.C.B. Synthesis, Characterization, and Evaluation of the Antimicrobial Effects and Cytotoxicity of a Novel Nanocomposite Based on Polyamide 6 and Trimetaphosphate Nanoparticles Decorated with Silver Nanoparticles. Antibiotics 2024, 13, 340. https://doi.org/10.3390/antibiotics13040340
de Morais LA, Souza Neto FNd, Hosida TY, dos Santos DM, de Almeida BC, Frollini E, Filho SPC, Barbosa DdB, de Camargo ER, Delbem ACB. Synthesis, Characterization, and Evaluation of the Antimicrobial Effects and Cytotoxicity of a Novel Nanocomposite Based on Polyamide 6 and Trimetaphosphate Nanoparticles Decorated with Silver Nanoparticles. Antibiotics. 2024; 13(4):340. https://doi.org/10.3390/antibiotics13040340
Chicago/Turabian Stylede Morais, Leonardo Antônio, Francisco Nunes de Souza Neto, Thayse Yumi Hosida, Danilo Martins dos Santos, Bianca Carvalho de Almeida, Elisabete Frollini, Sergio Paulo Campana Filho, Debora de Barros Barbosa, Emerson Rodrigues de Camargo, and Alberto Carlos Botazzo Delbem. 2024. "Synthesis, Characterization, and Evaluation of the Antimicrobial Effects and Cytotoxicity of a Novel Nanocomposite Based on Polyamide 6 and Trimetaphosphate Nanoparticles Decorated with Silver Nanoparticles" Antibiotics 13, no. 4: 340. https://doi.org/10.3390/antibiotics13040340
APA Stylede Morais, L. A., Souza Neto, F. N. d., Hosida, T. Y., dos Santos, D. M., de Almeida, B. C., Frollini, E., Filho, S. P. C., Barbosa, D. d. B., de Camargo, E. R., & Delbem, A. C. B. (2024). Synthesis, Characterization, and Evaluation of the Antimicrobial Effects and Cytotoxicity of a Novel Nanocomposite Based on Polyamide 6 and Trimetaphosphate Nanoparticles Decorated with Silver Nanoparticles. Antibiotics, 13(4), 340. https://doi.org/10.3390/antibiotics13040340