Feasibility, Challenges, and Benefits of Global Antimicrobial Resistance Surveillance System Implementation: Results from a Multicenter Quasi-Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
- Phase 1: Pre-implementation phase (January–December 2019)
- Phase 2: Implementation phase (end of December 2020)
- Phase 3: Post-implementation phase (January–April 2020)
2.1. Details of the GLASS Approach
2.1.1. Priority Pathogens and Specimen Types
2.1.2. De-Duplication
2.1.3. Origin of Infection
2.2. Collection and Analyses of Data
3. Results
3.1. Data during the Preimplementation Phase (January–December 2019)
3.2. Data during the Postimplementation Phase (January–April 2020)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rattanaumpawan, P.; Thamlikitkul, V. Epidemiology and economic impact of health care-associated infections and cost-effectiveness of infection control measures at a Thai university hospital. Am. J. Infect. Control 2017, 45, 145–150. [Google Scholar] [CrossRef]
- Khamsarn, S.; Nampoonsak, Y.; Busamaro, S.; Tangkoskul, T.; Seenama, C.; Rattanaumpawan, P.; Boonyasiri, A.; Thamlikitkul, V. Epidemiology of Antibiotic Use and Antimicrobial Resistance in Selected Communities in Thailand. J. Med. Assoc. Thai. 2016, 99, 270–275. [Google Scholar]
- Hay, S.I.; Rao, P.C.; Dolecek, C.; Day, N.P.J.; Stergachis, A.; Lopez, A.D.; Murray, C.J.L. Measuring and mapping the global burden of antimicrobial resistance. BMC Med. 2018, 16, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Action Plan on Antimicrobial Resistance; WHO Document Production Services: Geneva, Switzerland, 2015. [Google Scholar]
- World Health Organization. The Global Antimicrobial Resistance Surveillance System (GLASS): Manual for Early Implementation in Humans; WHO Document Production Services: Geneva, Switzerland, 2015. [Google Scholar]
- Majumder, M.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef] [PubMed]
- Sirijatuphat, R.; Sripanidkulchai, K.; Boonyasiri, A.; Rattanaumpawan, P.; Supapueng, O.; Kiratisin, P.; Thamlikitkul, V. Implementation of global antimicrobial resistance surveillance system (GLASS) in patients with bacteremia. PLoS ONE 2018, 13, e0190132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirijatuphat, R.; Pongsuttiyakorn, S.; Supapueng, O.; Kiratisin, P.; Thamlikitkul, V. Implementation of global antimicrobial resistance surveillance system (GLASS) in patients with bacteriuria. J. Glob. Antimicrob. Resist. 2020, 20, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Jitmuang, A.; Naksanguan, T.; Sirijatuphat, R.; Supapueng, O.; Kiratisin, P.; Thamlikitkul, V. Implementation of the World Health Organization’s Global Antimicrobial Resistance Surveillance System (GLASS) for the Surveillance of Sputum Specimens Collected from Patients at Siriraj Hospital. J. Med. Assoc. Thai. 2020, 103, 198–209. [Google Scholar]
- Mekviwattanawong, S.; Srifuengfung, S.; Chokepaibulkit, K.; Lohsiriwat, D.; Thamlikitkul, V. Epidemiology of Staphylococcus aureus infections and the prevalence of infection caused by community-acquired methicillin-resistant Staphylococcus aureus in hospitalized patients at Siriraj Hospital. J. Med. Assoc. Thai. 2006, 89 (Suppl. 5), S106–S117. [Google Scholar] [PubMed]
- Phokhaphan, P.; Tingpej, P.; Apisarnthanarak, A.; Kondo, S. Prevalence and Antibiotic Susceptiblity of Methicillin Resistant Staphylococcus Aureus, Collected at Thammasat University Hospital, Thailand, August 2012–July 2015. Southeast Asian J. Trop. Med. Public Health 2017, 48, 351–359. [Google Scholar] [PubMed]
- Salazar de Pablo, G.; Vaquerizo-Serrano, J.; Catalan, A.; Arango, C.; Moreno, C.; Ferre, F.; Shin, J.I.; Sullivan, S.; Brondino, N.; Solmi, M.; et al. Impact of coronavirus syndromes on physical and mental health of health care workers: Systematic review and meta-analysis. J. Affect. Disord. 2020, 275, 48–57. [Google Scholar] [CrossRef]
- Chutiyami, M.; Cheong, A.; Salihu, D.; Bello, U.M.; Ndwiga, D.; Maharaj, R.; Naidoo, K.; Kolo, M.A.; Jacob, P.; Chhina, N.; et al. COVID-19 Pandemic and Overall Mental Health of Healthcare Professionals Globally: A Meta-Review of Systematic Reviews. Front. Psychiatry 2022, 12, 804525. [Google Scholar] [CrossRef]
- Kabanova, A.; Gavriilaki, E.; Pelzer, B.W.; Brunetti, L.; Maiques-Diaz, A. Effect of the COVID-19 Pandemic on Laboratory and Clinical Research: A Testimony and a Call to Action From Researchers. Hemasphere 2020, 4, e499. [Google Scholar] [CrossRef] [PubMed]
- Virk, R.K.; Wood, T.; Tiscornia-Wasserman, P.G. Impact of COVID-19 pandemic on functioning of cytopathology laboratory: Experience and perspective from an academic centre in New York. Cytopathology 2021, 32, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Valencia, C.; Hammami, N.; Agodi, A.; Lepape, A.; Herrejon, E.P.; Blot, S.; Vincent, J.L.; Lambert, M.L. Poor adherence to guidelines for preventing central line-associated bloodstream infections (CLABSI): Results of a worldwide survey. Antimicrob. Resist. Infect. Control 2016, 5, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Specimens (Year) | Types (n) | Percentage of Susceptibility | ||||||
---|---|---|---|---|---|---|---|---|
Ceftriaxone | Ceftazidime | Pip/Taz | Meropenem | Ciprofloxacin | Amikacin | TMP/SMX | ||
All (2019) | All (n = 2195) | 56 | 69 | 91 | 93 | 50 | 94 | 45 |
All * (2020) | All (n = 793) | 47 | 61 | 89 | 95 | 46 | 98 | 41 |
Blood | All (2019) (n = 659) | 71 | 84 | 94 | 96 | 79 | 92 | 55 |
All * (2020) (n = 314) | 59 | 73 | 78 | 97 | 53 | 99 | 50 | |
CAI (n = 214) | 60 | 75 | 74 | 99 | 60 | 99 | 62 | |
HAI (n = 100) | 58 | 69 | 83 | 95 | 36 | 99 | 39 | |
Sputum | All (2019) (n = 391) | 48 | 62 | 87 | 90 | 74 | 87 | 44 |
All * (2020) (n = 120) | 41 | 57 | 97 | 94 | 53 | 97 | 42 | |
CAI (n = 65) | 43 | 55 | 92 | 90 | 52 | 100 | 52 | |
HAI (n = 55) | 39 | 60 | 100 | 100 | 56 | 92 | 33 | |
Urine | All (2019) (n = 1237) | 52 | 64 | 89 | 92 | 70 | 87 | 40 |
All * (2020) (n = 458) | 42 | 55 | 89 | 93 | 37 | 98 | 38 | |
CAI (n = 288) | 47 | 59 | 92 | 95 | 37 | 100 | 41 | |
HAI (n = 170) | 35 | 48 | 83 | 90 | 38 | 94 | 27 |
Specimens (Year) | Types (n) | Percentage of Susceptibility | ||||||
---|---|---|---|---|---|---|---|---|
Ceftriaxone | Ceftazidime | Pip/Taz | Meropenem | Ciprofloxacin | Amikacin | TMP/SMX | ||
All (2019) | All (n = 2591) | 59 | 65 | 75 | 88 | 62 | 92 | 63 |
All * (2020) | All (n = 684) | 56 | 55 | 70 | 89 | 56 | 94 | 59 |
Blood | All (2019) (n = 307) | 63 | 70 | 67 | 86 | 88 | 90 | 61 |
All * (2020) (n = 179) | 70 | 64 | 66 | 91 | 72 | 96 | 52 | |
CAI (n = 101) | 85 | 80 | 85 | 98 | 83 | 99 | 65 | |
HAI (n = 78) | 50 | 46 | 53 | 82 | 53 | 94 | 43 | |
Sputum | All (2019) (n = 1864) | 59 | 66 | 78 | 90 | 87 | 89 | 65 |
All * (2020) (n = 359) | 57 | 57 | 73 | 93 | 65 | 99 | 63 | |
CAI (n = 143) | 73 | 75 | 82 | 97 | 81 | 99 | 73 | |
HAI (n = 55) | 48 | 46 | 67 | 91 | 54 | 98 | 58 | |
Urine | All (2019) (n = 480) | 47 | 52 | 66 | 81 | 72 | 81 | 51 |
All * (2020) (n = 222) | 41 | 39 | 62 | 82 | 28 | 86 | 59 | |
CAI (n = 95) | 63 | 54 | 62 | 90 | 34 | 94 | 61 | |
HAI (n = 127) | 28 | 27 | 63 | 76 | 26 | 80 | 55 |
Specimens (Year) | Types (n) | Percentage of Susceptibility | ||||||
---|---|---|---|---|---|---|---|---|
Ceftriaxone | Ceftazidime | Pip/Taz | Meropenem | Ciprofloxacin | Amikacin | TMP/SMX | ||
All (2019) | All (n = 2270) | 17 | 38 | 35 | 39 | 40 | 60 | 49 |
All * (2020) | All (n = 429) | 7 | 16 | 25 | 20 | 15 | 54 | 36 |
Blood | All (2019) (n = 240) | 33 | 51 | 50 | 55 | 58 | 75 | 52 |
All * (2020) (n = 88) | 27 | 33 | 41 | 44 | 46 | 73 | 47 | |
CAI (n = 20) | 31 | 86 | 75 | 93 | 100 | 93 | 71 | |
HAI (n = 68) | 11 | 20 | 31 | 32 | 35 | 67 | 40 | |
Sputum | All (2019) (n = 1894) | 7 | 35 | 32 | 37 | 43 | 57 | 47 |
All * (2020) (n = 303) | 3 | 12 | 21 | 13 | 5 | 45 | 33 | |
CAI (n = 34) | 8 | 21 | 23 | 28 | 33 | 57 | 32 | |
HAI (n = 269) | 2 | 12 | 21 | 11 | 4 | 44 | 34 | |
Urine | All (2019) (n = 210) | 8 | 29 | 31 | 28 | 33 | 63 | 44 |
All * (2020) (n = 73) | 3 | 12 | 20 | 20 | 13 | 64 | 25 | |
CAI (n = 12) | 0 | 0 | - | 0 | 0 | 67 | - | |
HAI (n = 61) | 4 | 13 | 20 | 21 | 14 | 64 | 25 |
Specimens (Year) | Types (n) | Percentage of Susceptibility | ||||
---|---|---|---|---|---|---|
Ceftazidime | Pip/Taz | Meropenem | Ciprofloxacin | Amikacin | ||
All (2019) | All (n = 1459) | 74 | 81 | 77 | 80 | 90 |
All * (2020) | All (n = 368) | 65 | 72 | 68 | 69 | 80 |
Blood | All (2019) (n = 90) | 75 | 87 | 70 | 59 | 93 |
All * (2020) (n = 38) | 74 | 73 | 58 | 78 | 81 | |
CAI (n = 11) | 100 | 100 | 91 | 100 | 100 | |
HAI (n = 27) | 63 | 57 | 44 | 72 | 73 | |
Sputum | All (2019) (n = 1061) | 80 | 85 | 82 | 83 | 93 |
All * (2020) (n = 275) | 72 | 77 | 76 | 83 | 91 | |
CAI (n = 67) | 84 | 79 | 81 | 91 | 95 | |
HAI (n = 208) | 69 | 77 | 74 | 81 | 89 | |
Urine | All (2019) (n = 294) | 47 | 55 | 53 | 42 | 57 |
All * (2020) (n = 75) | 34 | 46 | 43 | 29 | 36 | |
CAI (n = 17) | 38 | 50 | 38 | 25 | 25 | |
HAI (n = 58) | 33 | 44 | 43 | 32 | 38 |
Specimens (Year) | Types (n) | Percentage of Susceptibility | |||||
---|---|---|---|---|---|---|---|
Oxacillin | Ciprofloxacin | Clindamycin | Erythromycin | TMP/SMX | Vancomycin | ||
All (2019) | All (n = 608) | 91 | 89 | 89 | 91 | 95 | 100 |
All * (2020) | All (n = 221) | 96 | 98 | 87 | 86 | 95 | 100 |
Blood | All (2019) (n = 211) | 86 | 92 | 87 | 90 | 92 | 100 |
All * (2020) (n = 118) | 96 | 98 | 89 | 88 | 90 | 100 | |
CAI (n = 74) | 96 | 97 | 91 | 90 | 89 | 100 | |
HAI (n = 44) | 94 | 100 | 86 | 86 | 93 | 100 | |
Sputum | All (2019) (n = 194) | 97 | 95 | 89 | 94 | 97 | 100 |
All * (2020) (n = 110) | 97 | 97 | 85 | 85 | 98 | 100 | |
CAI (n = 72) | 96 | 98 | 88 | 88 | 97 | 100 | |
HAI (n = 38) | 100 | 95 | 81 | 81 | 100 | 100 | |
Urine ** | - | - | - | - | - | - | - |
- | - | - | - | - | - | - | |
- | - | - | - | - | - | - | |
- | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirijatuphat, R.; Chayangsu, S.; Srisompong, J.; Ruangkriengsin, D.; Thamlikitkul, V.; Tiengrim, S.; Wangchinda, W.; Koomanachai, P.; Rattanaumpawan, P. Feasibility, Challenges, and Benefits of Global Antimicrobial Resistance Surveillance System Implementation: Results from a Multicenter Quasi-Experimental Study. Antibiotics 2022, 11, 348. https://doi.org/10.3390/antibiotics11030348
Sirijatuphat R, Chayangsu S, Srisompong J, Ruangkriengsin D, Thamlikitkul V, Tiengrim S, Wangchinda W, Koomanachai P, Rattanaumpawan P. Feasibility, Challenges, and Benefits of Global Antimicrobial Resistance Surveillance System Implementation: Results from a Multicenter Quasi-Experimental Study. Antibiotics. 2022; 11(3):348. https://doi.org/10.3390/antibiotics11030348
Chicago/Turabian StyleSirijatuphat, Rujipas, Sunee Chayangsu, Jintana Srisompong, Darat Ruangkriengsin, Visanu Thamlikitkul, Surapee Tiengrim, Walaiporn Wangchinda, Pornpan Koomanachai, and Pinyo Rattanaumpawan. 2022. "Feasibility, Challenges, and Benefits of Global Antimicrobial Resistance Surveillance System Implementation: Results from a Multicenter Quasi-Experimental Study" Antibiotics 11, no. 3: 348. https://doi.org/10.3390/antibiotics11030348