Anti-Staphylococcal Activity of Cinnamomum zeylanicum Essential Oil against Planktonic and Biofilm Cells Isolated from Canine Otological Infections
Abstract
:1. Introduction
2. Results
2.1. Staphylococcal Strains
2.2. CZEO Chemical Composition
2.3. Antimicrobial Activity
2.4. Antibiofilm Activity
3. Discussion
4. Materials and Methods
4.1. Staphylococcal Strains
4.2. Culture Conditions
4.3. Oil Acquisition and Manipulation
4.4. Determination of CZEO Chemical Composition
4.5. CZEO Antimicrobial Activity
4.5.1. The Aromatogram Method
4.5.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
4.6. CZEO Antibiofilm Activity
4.6.1. Biofilm Formation
4.6.2. Preformed Biofilm
4.7. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A
Identified Components | KIC 1 | KIL 2 | CZEO (%) 3 |
Benzenoid | 0.87 | ||
Benzaldehyde | 967 | 960 | 0.87 |
Monoterpene hydrocarbons | 0.68 | ||
o-cimene | 1030 | 1026 | 0.34 |
β- Phellandrene | 1036 | 1029 | 0.34 |
Oxygenated monoterpene | 4.92 | ||
1,8-Cineol | 1039 | 1031 | 1.42 |
linalool | 1102 | 1096 | 3.5 |
Phenylpropanoids | 90.09 | ||
(E)-cinnamaldehyde | 1281 | 1270 | 77.42 |
eugenol | 1364 | 1359 | 8.17 |
(E) cinamyl-acetato | 1451 | 1446 | 4.5 |
Sesquiterpene hydrocarbons | 3.44 | ||
α- Copaene | 1383 | 1376 | 1.91 |
(E)-Caryophylene | 1428 | 1419 | 1.1 |
δ-Cadinene | 1531 | 1523 | 0.43 |
Total identified | 100 |
References
- De Martino, L.; Nocera, F.P.; Mallardo, K.; Nizza, S.; Masturzo, E.; Fiorito, F.; Iovane, G.; Catalanotti, P. An update on microbiological causes of canine otitis externa in Campania Region, Italy. Asian Pac. J. Trop. Biomed. 2016, 6, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Penna, B.; Varges, R.; Medeiros, L.; Martins, G.M.; Martins, R.R.; Lilenbaum, W. Species distribution and antimicrobial susceptibility of staphylococci isolated from canine otitis externa. Vet. Dermatol. 2010, 21, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Hill, P.B.; Imai, A. The immunopathogenesis of staphylococcal skin infections—A review. Comp. Immunol. Microbiol. Infect. Dis. 2016, 49, 8–28. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, A.; Lloyd, D.H. What has changed in canine pyoderma? A narrative review. Vet. J. 2018, 235, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Davies, J. Origins and evolution of antibiotic resistance. Microbiologia 1996, 12, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.C.; Worthing, K.A.; Ward, M.P.; Norris, J.M. Commensal Staphylococci Including Methicillin-Resistant Staphylococcus aureus from Dogs and Cats in Remote New South Wales, Australia. Microb. Ecol. 2020, 79, 164–174. [Google Scholar] [CrossRef]
- Singh, A.; Walker, M.; Rousseau, J.; Weese, J.S. Characterization of the biofilm forming ability of Staphylococcus pseudintermedius from dogs. BMC Vet. Res. 2013, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [Green Version]
- Behbahani, B.A.; Falah, F.; Arab, L.F.; Vasiee, M.; Yazdi, T.F. Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomum zeylanicum Bark Essential Oil. Evid.-Based Complement. Altern. Med. 2020, 2020, 8. [Google Scholar] [CrossRef]
- Rocha, R.R.; Matos, M.N.C.; Guerrero, J.A.P.; Cavalcante, R.M.B.; Melo, R.S.; Azevedo, Á.M.A.; Pereira, A.M.G.; Lopes, P.H.R.; Rodrigues, T.H.S.; Bandeira, P.N.; et al. Comparative study of the chemical composition, antibacterial activity and synergic effects of the essential oils of Croton tetradenius baill. and C. pulegiodorus baill. against Staphylococcus aureus isolates. Microb. Pathog. 2021, 156, 104934. [Google Scholar] [CrossRef]
- Ebani, V.V.; Mancianti, F. Use of essential oils in veterinary medicine to combat bacterial and fungal infections. Vet. Sci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Nocera, F.P.; Mancini, S.; Najar, B.; Bertelloni, F.; Pistelli, L.; De Filippis, A.; Fiorito, F.; De Martino, L.; Fratini, F. Antimicrobial activity of some essential oils against methicillin-susceptible and methicillin-resistant Staphylococcus pseudintermedius-associated pyoderma in dogs. Animals 2020, 10, 1782. [Google Scholar] [CrossRef]
- Purkait, S.; Bhattacharya, A.; Bag, A.; Chattopadhyay, R.R. Evaluation of antibiofilm efficacy of essential oil components β-caryophyllene, cinnamaldehyde and eugenol alone and in combination against biofilm formation and preformed biofilms of Listeria monocytogenes and Salmonella typhimurium. Lett. Appl. Microbiol. 2020, 71, 195–202. [Google Scholar] [CrossRef]
- Yanakiev, S. Effects of Cinnamon (Cinnamomum spp.) in Dentistry: A Review. Molecules 2020, 25, 4184. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, T.; Yuan, Y.; Lin, S.; Xu, J.; Ye, H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 2015, 47, 196–202. [Google Scholar] [CrossRef]
- Melo, R.S.; Azevedo, Á.M.A.; Pereira, A.M.G.; Rocha, R.R.; Cavalcante, R.M.B.; Matos, M.N.C.; Lopes, P.H.R.; Gomes, G.A.; Rodrigues, T.H.S.; Dos Santos, H.S.; et al. Chemical composition and antimicrobial effectiveness of Ocimum gratissimum L. essential oil against multidrug-resistant isolates of Staphylococcus aureus and Escherichia coli. Molecules 2019, 24, 3864. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Huang, Z.; Jiang, W.; Zhou, W. Antimicrobial Activity of Cinnamaldehyde on Streptococcus mutans Biofilms. Front. Microbiol. 2019, 10, 2241. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Kasai, T.; Fukui, Y.; Aoki, K.; Ishii, Y.; Tateda, K. Changes in the ear canal microbiota of dogs with otitis externa. J. Appl. Microbiol. 2021, 130, 1084–1091. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.Y. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Pieracci, Y.; Ciccarelli, D.; Giovanelli, S.; Pistelli, L.; Flamini, G.; Cervelli, C.; Mancianti, F.; Nardoni, S.; Bertelloni, F.; Ebani, V.V. Antimicrobial activity and composition of five rosmarinus (Now salvia spp. and varieties) essential oils. Antibiotics 2021, 10, 11090. [Google Scholar] [CrossRef] [PubMed]
- Ghavam, M.; Manca, M.L.; Manconi, M.; Bacchetta, G. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth. Sci. Rep. 2020, 10, 15647. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Wubbolts, R.W.; Haagsman, H.P.; Veldhuizen, E.J.A. Inhibition and Eradication of Pseudomonas aeruginosa Biofilms by Host Defence Peptides. Sci. Rep. 2018, 8, 10446. [Google Scholar] [CrossRef]
- Carneiro, V.A.; de Oliveira, S.T.; Silva, R.L.; Duarte, H.S.; Silva, M.L.; Matos, M.N.C.; Cavalcante, R.M.B.; Figueira, C.S.; Lorenzón, E.N.; Cilli, E.M.; et al. Antimicrobial and antibiofilm activity of Lys-[Trp6]hy-a1 combined with ciprofloxacin against gram-negative bacteria. Protein Pept. Lett. 2020, 27, 1124–1131. [Google Scholar] [CrossRef]
- Rossi, M.W.; Heuertz, R.M. Cinnamaldehyde inhibits MRSA biofilm formation and reduces cell viability. Am. Soc. Clin. Lab. Sci. 2017, 30, 214–218. [Google Scholar] [CrossRef]
- Verderosa, A.D.; Totsika, M.; Fairfull-Smith, K.E. Bacterial biofilm eradication agents: A current review. Front. Chem. 2019, 7, 824. [Google Scholar] [CrossRef] [Green Version]
- Song, C.Y.; Nam, E.H.; Park, S.H.; Hwang, C.Y. In vitro efficacy of the essential oil from Leptospermum scoparium (manuka) on antimicrobial susceptibility and biofilm formation in Staphylococcus pseudintermedius isolates from dogs. Vet. Dermatol. 2013, 24, 404–409. [Google Scholar] [CrossRef]
- Dawson, C.C.; Intapa, C.; Jabra-Rizk, M.A. “Persisters”: Survival at the cellular level. PLoS Pathog. 2011, 7, e1002121. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.; Panda, A.K.; De Mandal, S.; Shakeel, M.; Bisht, S.S.; Khan, J. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Front. Microbiol. 2020, 11, 566325. [Google Scholar] [CrossRef]
- Kaur, M.; Nagpal, M.; Singh, M.; Singh, T.G.; Aggarwal, G.; Dhingra, G.A. Improved antibacterial activity of topical gel-based on nanosponge carrier of cinnamon oil. BioImpacts 2021, 11, 23–31. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Zhang, R.; Lan, W.; Qin, W. Development of poly(Lactic acid)/chitosan fibers loaded with essential oil for antimicrobial applications. Nanomaterials 2017, 7, 194. [Google Scholar] [CrossRef] [Green Version]
- Dingle, T.C.; Butler-Wu, S.M. MALDI-TOF mass spectrometry for microorganism identification. Clin. Lab. Med. 2013, 33, 589–609. [Google Scholar] [CrossRef]
- Clinical Laboratory Standards Institute CLSI M100. Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI: Wayne, PA, USA, 2019. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carroll Stream, IL, USA, 2007. [Google Scholar]
- Van Den Dool, H.; Dec Kratz, P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institue CLSI M02. Performance Standards for Antimicrobial Disk Suspectibility Tests, 13th ed.; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Mith, H.; Duré, R.; Delcenserie, V.; Zhiri, A.; Daube, G.; Clinquart, A. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Sci. Nutr. 2014, 2, 403–416. [Google Scholar] [CrossRef] [Green Version]
Sample | MALDI-TOF ID | Resistance Profile |
---|---|---|
1 | S. saprophyticus 1 | PEN |
2 | S. saprophyticus 2 | AZI, ERI, CLO |
3 | S. schleiferi 1 | |
4 | S. schleiferi 2 | SUT |
5 | S. pseudintermedius 1 | CIP, SUT, TET, PEN, CLI |
6 | S. pseudintermedius 2 | TET, CLO |
Staphylococcus Strains | IZD (mm) | MIC (µg/mL) | MBC (µg/mL) |
---|---|---|---|
S. saprophyticus 1 | 49.5 ± 2.1 | 1000 | 1000 |
S. saprophyticus 2 | 49.0 ± 0.1 | 1000 | 1000 |
S. schleiferi 1 | 34.0 ± 2.0 | 500 | 500 |
S. schleiferi 2 | 39.0 ± 2.8 | 500 | 500 |
S. pseudintermedius 1 | 35.0 ± 4.2 | 500 | 500 |
S. pseudintermedius 2 | 36.0 ± 0.1 | 500 | 500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albuquerque, V.d.Q.; Soares, M.J.C.; Matos, M.N.C.; Cavalcante, R.M.B.; Guerrero, J.A.P.; Soares Rodrigues, T.H.; Gomes, G.A.; de Medeiros Guedes, R.F.; Castelo-Branco, D.d.S.C.M.; Goes da Silva, I.N.; et al. Anti-Staphylococcal Activity of Cinnamomum zeylanicum Essential Oil against Planktonic and Biofilm Cells Isolated from Canine Otological Infections. Antibiotics 2022, 11, 4. https://doi.org/10.3390/antibiotics11010004
Albuquerque VdQ, Soares MJC, Matos MNC, Cavalcante RMB, Guerrero JAP, Soares Rodrigues TH, Gomes GA, de Medeiros Guedes RF, Castelo-Branco DdSCM, Goes da Silva IN, et al. Anti-Staphylococcal Activity of Cinnamomum zeylanicum Essential Oil against Planktonic and Biofilm Cells Isolated from Canine Otological Infections. Antibiotics. 2022; 11(1):4. https://doi.org/10.3390/antibiotics11010004
Chicago/Turabian StyleAlbuquerque, Vinicius de Queiroz, Maria Janeila Carvalho Soares, Maria Nágila Carneiro Matos, Rafaela Mesquita Bastos Cavalcante, Jesús Alberto Pérez Guerrero, Tigressa Helena Soares Rodrigues, Geovany Amorim Gomes, Rodrigo Fonseca de Medeiros Guedes, Débora de Souza Collares Maia Castelo-Branco, Isaac Neto Goes da Silva, and et al. 2022. "Anti-Staphylococcal Activity of Cinnamomum zeylanicum Essential Oil against Planktonic and Biofilm Cells Isolated from Canine Otological Infections" Antibiotics 11, no. 1: 4. https://doi.org/10.3390/antibiotics11010004
APA StyleAlbuquerque, V. d. Q., Soares, M. J. C., Matos, M. N. C., Cavalcante, R. M. B., Guerrero, J. A. P., Soares Rodrigues, T. H., Gomes, G. A., de Medeiros Guedes, R. F., Castelo-Branco, D. d. S. C. M., Goes da Silva, I. N., & Carneiro, V. A. (2022). Anti-Staphylococcal Activity of Cinnamomum zeylanicum Essential Oil against Planktonic and Biofilm Cells Isolated from Canine Otological Infections. Antibiotics, 11(1), 4. https://doi.org/10.3390/antibiotics11010004