Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung
Abstract
:1. Introduction
2. The Pathophysiology of Cystic Fibrosis
2.1. Therapeutic Management of Cystic Fibrosis
2.2. The Respiratory Microbiome
2.3. Infection Progression in CF Respiratory Diseases
2.4. The Structure of the CF Lung Microbiota
2.5. Factors Shaping the CF Lung Microbiota
2.6. The Role of Bile Acids (BAs) in Shaping the CF Lung Microbiome
2.7. Bile Acids (BAs) Trigger a Switch towards a Chronic Biofilm Lifestyle in Respiratory Pathogens
2.8. Bile Acids (BAs) Elicit a Pro-Inflammatory Response in Respiratory Disease
3. Future Perspectives
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO (World Health Organisation). Global Status Report on Noncommunicable Diseases 2010; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Charlson, E.S.; Bittinger, K.; Haas, A.R.; Fitzgerald, A.S.; Frank, I.; Yadav, A.; Bushman, F.; Collman, R.G. Topographical Continuity of Bacterial Populations in the Healthy Human Respiratory Tract. Am. J. Respir. Crit. Care Med. 2011, 184, 957–963. [Google Scholar] [CrossRef] [Green Version]
- Dickson, R.P.; Erb-Downward, J.R.; Freeman, C.M.; McCloskey, L.; Falkowski, N.R.; Huffnagle, G.B.; Curtis, J.L. Bacterial Topography of the Healthy Human Lower Respiratory Tract. mBio 2017, 8, e02287-16. [Google Scholar] [CrossRef]
- Erb-Downward, J.R.; Thompson, D.L.; Han, M.K.; Freeman, C.M.; McCloskey, L.; Schmidt, L.A.; Young, V.B.; Toews, G.B.; Curtis, J.L.; Sundaram, B.; et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE 2011, 6, e16384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blainey, P.C.; Milla, C.E.; Cornfield, D.N.; Quake, S.R. Quantitative Analysis of the Human Airway Microbial Ecology Reveals a Pervasive Signature for Cystic Fibrosis. Sci. Transl. Med. 2012, 4, 153ra130. [Google Scholar] [CrossRef] [Green Version]
- Cox, M.; Allgaier, M.; Taylor, B.; Baek, M.S.; Huang, Y.; Daly, R.; Karaoz, U.; Andersen, G.L.; Brown, R.; Fujimura, K.E.; et al. Airway Microbiota and Pathogen Abundance in Age-Stratified Cystic Fibrosis Patients. PLoS ONE 2010, 5, e11044. [Google Scholar] [CrossRef]
- Zhang, S.; Shrestha, C.L.; Kopp, B.T. Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have differential effects on cystic fibrosis macrophage function. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hisert, K.B.; Heltshe, S.L.; Pope, C.; Jorth, P.; Wu, X.; Edwards, R.M.; Radey, M.; Accurso, F.J.; Wolter, D.J.; Cooke, G.; et al. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections. Am. J. Respir. Crit. Care Med. 2017, 195, 1617–1628. [Google Scholar] [CrossRef]
- Riordan, J.R.; Rommens, J.M.; Kerem, B.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.L.; et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989, 245, 1066–1073. [Google Scholar] [CrossRef]
- Dave, K.; Dobra, R.; Scott, S.; Saunders, C.; Matthews, J.; Simmonds, N.J.; Davies, J.C. Entering the era of highly effective modulator therapies. Pediatr. Pulmonol. 2021, 56, S79–S89. [Google Scholar] [CrossRef] [PubMed]
- Bozoky, Z.; Ahmadi, S.; Milman, T.; Kim, T.H.; Du, K.; Di Paola, M.; Pasyk, S.; Pekhletski, R.; Keller, J.; Bear, C.E.; et al. Synergy of cAMP and calcium signaling pathways in CFTR regulation. Proc. Natl. Acad. Sci. USA 2017, 114, E2086–E2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrick, S.M.; Mroz, M.S.; Greene, C.M.; Keely, S.J.; Harvey, B.J. Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl− channels in Calu-3 airway epithelial cells. Am. J. Physiol. Cell. Mol. Physiol. 2014, 307, L407–L418. [Google Scholar] [CrossRef]
- Joseloff, E.; Sha, W.; Bell, S.C.; Wetmore, D.R.; Lawton, K.A.; Milburn, M.V.; Ryals, J.A.; Guo, L.; Muhlebach, M.S. Serum metabolomics indicate altered cellular energy metabolism in children with cystic fibrosis. Pediatr. Pulmonol. 2013, 49, 463–472. [Google Scholar] [CrossRef]
- Esteves, C.Z.; Dias, L.D.A.; Lima, E.D.O.; De Oliveira, D.N.; Melo, C.F.O.R.; Delafiori, J.; Gomez, C.C.S.; Ribeiro, J.D.; Ribeiro, A.F.; Levy, C.E.; et al. Skin Biomarkers for Cystic Fibrosis: A Potential Non-Invasive Approach for Patient Screening. Front. Pediatr. 2018, 5, 290. [Google Scholar] [CrossRef] [Green Version]
- Setchell, K.; Smethurst, P.; Giunta, A.; Colombo, C. Serum bile acid composition in patients with cystic fibrosis. Clin. Chim. Acta 1985, 151, 101–110. [Google Scholar] [CrossRef]
- Cystic Fibrosis Foundation. Available online: https://www.cff.org/What-is-CF/About-Cystic-Fibrosis/ (accessed on 23 June 2021).
- Bessonova, L.; Volkova, N.; Higgins, M.; Bengtsson, L.; Tian, S.; Simard, C.; Konstan, M.W.; Sawicki, G.S.; Sewall, A.; Nyangoma, S.; et al. Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax 2018, 73, 731–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turcios, N.L. Cystic Fibrosis Lung Disease: An Overview. Respir. Care 2019, 65, 233–251. [Google Scholar] [CrossRef]
- Cystic Fibrosis Foundation. Patient Registry: Annual Data Report; Cystic Fibrosis Foundation: Bethesda, Maryland, 2015. [Google Scholar]
- Kurbatova, P.; Bessonov, N.; Volpert, V.; Tiddens, H.; Cornu, C.; Nony, P.; Caudri, D. Model of mucociliary clearance in cystic fibrosis lungs. J. Theor. Biol. 2015, 372, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Boucher, R.C. Airway Surface Dehydration in Cystic Fibrosis: Pathogenesis and Therapy. Annu. Rev. Med. 2007, 58, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Muhlebach, M.S.; Stewart, P.W.; Leigh, M.W.; Noah, T.L. Quantitation of Inflammatory Responses to Bacteria in Young Cystic Fibrosis and Control Patients. Am. J. Respir. Crit. Care Med. 1999, 160, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Berger, M. Inflammation in the Lung in Cystic Fibrosis A Vicious Cycle That Does More Harm Than Good? In Methods in Molecular Biology; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1990; pp. 119–142. [Google Scholar]
- Rosenfeld, M.; Gibson, R.L.; MN, S.M.; Emerson, J.; Burns, J.L.; Castile, R.; Hiatt, P.; McCoy, K.; Wilson, C.B.; Inglis, A.; et al. Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr. Pulmonol. 2001, 32, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Heijerman, H. Infection and inflammation in cystic fibrosis: A short review. J. Cyst. Fibros. 2005, 4, 3–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garratt, L.W.; Breuer, O.; Schofield, C.J.; A McLean, S.; Laucirica, D.R.; Tirouvanziam, R.; Clements, B.S.; Kicic, A.; Ranganathan, S.; Stick, S.M.; et al. Changes in airway inflammation with pseudomonas eradication in early cystic fibrosis. J. Cyst. Fibros. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ronan, N.J.; Elborn, J.S.; Plant, B.J. Current and emerging comorbidities in cystic fibrosis. La Presse Médicale 2017, 46, e125–e138. [Google Scholar] [CrossRef]
- Edmondson, C.; Davies, J.C. Current and future treatment options for cystic fibrosis lung disease: Latest evidence and clinical implications. Ther. Adv. Chronic Dis. 2016, 7, 170–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agent, P.; Parrott, H. Inhaled therapy in cystic fibrosis: Agents, devices and regimens. Breathe 2015, 11, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Bardin, E.; Pastor, A.; Semeraro, M.; Golec, A.; Hayes, K.; Chevalier, B.; Berhal, F.; Prestat, G.; Hinzpeter, A.; Gravier-Pelletier, C.; et al. Modulators of CFTR. Updates on clinical development and future directions. Eur. J. Med. Chem. 2021, 213, 113195. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, S.H.; Solomon, G.M.; Zeitlin, P.L.; Flume, P.A.; Casey, A.; McCoy, K.; Zemanick, E.T.; Mandagere, A.; Troha, J.M.; Shoemaker, S.A.; et al. Pharmacokinetics and safety of cavosonstat (N91115) in healthy and cystic fibrosis adults homozygous for F508DEL-CFTR. J. Cyst. Fibros. 2017, 16, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, K.A.; Wachi, S.; Drew, L.; Dukovski, D.; Green, O.; Bastos, C.; Cullen, M.D.; Hauck, S.; Tait, B.D.; Munoz, B.; et al. Use of a High-Throughput Phenotypic Screening Strategy to Identify Amplifiers, a Novel Pharmacological Class of Small Molecules That Exhibit Functional Synergy with Potentiators and Correctors. SLAS Discov. Adv. Life Sci. R&D 2017, 23, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Graham, C.; Hart, S. CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opin. Biol. Ther. 2021, 21, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Kopp, B.T.; McCulloch, S.; Shrestha, C.L.; Zhang, S.; Sarzynski, L.; Woodley, F.W.; Hayes, D. Metabolomic responses to lumacaftor/ivacaftor in cystic fibrosis. Pediatr. Pulmonol. 2018, 53, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Mareux, E.; Lapalus, M.; Amzal, R.; Almes, M.; Aït-Slimane, T.; Delaunay, J.; Adnot, P.; Collado-Hilly, M.; Davit-Spraul, A.; Falguières, T.; et al. Functional rescue of an ABCB11 mutant by ivacaftor: A new targeted pharmacotherapy approach in bile salt export pump deficiency. Liver Int. 2020, 40, 1917–1925. [Google Scholar] [CrossRef]
- Kirwan, L.; Fletcher, G.; Harrington, M.; Jeleniewska, P.; Zhou, S.; Casserly, B.; Gallagher, C.G.; Greally, P.; Gunaratnam, C.; Herzig, M.; et al. Longitudinal Trends in Real-World Outcomes after Initiation of Ivacaftor. A Cohort Study from the Cystic Fibrosis Registry of Ireland. Ann. Am. Thorac. Soc. 2019, 16, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, B.W.; Davies, J.; McElvaney, N.G.; Tullis, E.; Bell, S.C.; Dřevínek, P.; Griese, M.; McKone, E.F.; Wainwright, C.E.; Konstan, M.W.; et al. A CFTR Potentiator in Patients with Cystic Fibrosis and theG551DMutation. N. Engl. J. Med. 2011, 365, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Barry, P.J.; Plant, B.J.; Nair, A.; Bicknell, S.; Simmonds, N.J.; Bell, N.J.; Shafi, N.T.; Daniels, T.; Shelmerdine, S.; Felton, I.; et al. Effects of Ivacaftor in Patients With Cystic Fibrosis Who Carry the G551D Mutation and Have Severe Lung Disease. Chest 2014, 146, 152–158. [Google Scholar] [CrossRef]
- Heltshe, S.L.; Mayer-Hamblett, N.; Burns, J.L.; Khan, U.; Baines, A.; Ramsey, B.W.; Rowe, S.M. Pseudomonas aeruginosa in Cystic Fibrosis Patients With G551D-CFTR Treated With Ivacaftor. Clin. Infect. Dis. 2015, 60, 703–712. [Google Scholar] [CrossRef]
- Rowe, S.M.; Heltshe, S.L.; Gonska, T.; Donaldson, S.H.; Borowitz, D.; Gelfond, D.; Sagel, S.D.; Khan, U.; Mayer-Hamblett, N.; Van Dalfsen, J.M.; et al. Clinical Mechanism of the Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor in G551D-mediated Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2014, 190, 175–184. [Google Scholar] [CrossRef]
- Boutin, S.; Graeber, S.Y.; Weitnauer, M.; Panitz, J.; Stahl, M.; Clausznitzer, D.; Kaderali, L.; Einarsson, G.; Tunney, M.M.; Elborn, J.S.; et al. Comparison of Microbiomes from Different Niches of Upper and Lower Airways in Children and Adolescents with Cystic Fibrosis. PLOS ONE 2015, 10, e0116029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickson, R.P.; Erb-Downward, J.R.; Freeman, C.M.; McCloskey, L.; Beck, J.M.; Huffnagle, G.B.; Curtis, J.L. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc. 2015, 12, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Beck, J.M.; Schloss, P.D.; Campbell, T.B.; Crothers, K.; Curtis, J.L.; Flores, S.C.; Fontenot, A.P.; Ghedin, E.; Huang, L.; et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 2013, 187, 1067–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willner, D.; Haynes, M.R.; Furlan, M.; Schmieder, R.; Lim, Y.W.; Rainey, P.B.; Rohwer, F.; Conrad, D. Spatial distribution of microbial communities in the cystic fibrosis lung. ISME J. 2011, 6, 471–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.D.N.; Viscogliosi, E.; Delhaes, L. The lung mycobiome: An emerging field of the human respiratory microbiome. Front. Microbiol. 2015, 6, 89. [Google Scholar] [CrossRef]
- Weitnauer, M.; Mijosek, V.; Dalpke, A.H. Control of local immunity by airway epithelial cells. Mucosal Immunol. 2016, 9, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Winslow, C.-E.A. A NEW METHOD OF ENUMERATING BACTERIA IN AIR. Sci. 1908, 28, 28–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsland, B.J.; Gollwitzer, E.S. Host–microorganism interactions in lung diseases. Nat. Rev. Immunol. 2014, 14, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Remot, A.; Descamps, D.; Noordine, M.-L.; Boukadiri, A.; Mathieu, E.; Robert, V.; Riffault, S.; Lambrecht, B.; Langella, P.; Hammad, H.; et al. Bacteria isolated from lung modulate asthma susceptibility in mice. ISME J. 2017, 11, 1061–1074. [Google Scholar] [CrossRef] [Green Version]
- Hilty, M.; Burke, C.; Pedro, H.; Cardenas, P.; Bush, A.; Bossley, C.; Davies, J.; Ervine, A.; Poulter, L.; Pachter, L.; et al. Disordered microbial communities in asthmatic airways. PLoS ONE 2010, 5, e8578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassis, C.M.; Erb-Downward, J.R.; Dickson, R.P.; Freeman, C.M.; Schmidt, T.M.; Young, V.B.; Beck, J.M.; Curtis, J.L.; Huffnagle, G.B. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio 2015, 6, e00037-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkataraman, A.; Bassis, C.M.; Beck, J.M.; Young, V.B.; Curtis, J.L.; Huffnagle, G.B.; Schmidt, T.M. Application of a neutral community model to assess structuring of the human lung microbiome. mBio 2015, 6, e02284-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.G.; Sulaiman, I.; Tsay, J.-C.J.; Perez, L.; Franca, B.; Li, Y.; Wang, J.; Gonzalez, A.N.; El-Ashmawy, M.; Carpenito, J.; et al. Episodic Aspiration with Oral Commensals Induces a MyD88-dependent, Pulmonary T-Helper Cell Type 17 Response that Mitigates Susceptibility to Streptococcus pneumoniae. Am. J. Respir. Crit. Care Med. 2021, 203, 1099–1111. [Google Scholar] [CrossRef]
- Saiman, L. Improving outcomes of infections in cystic fibrosis in the era of CFTR modulator therapy. Pediatr. Pulmonol. 2019, 54, S18–S26. [Google Scholar] [CrossRef] [Green Version]
- Surette, M.G. The Cystic Fibrosis Lung Microbiome. Ann. Am. Thorac. Soc. 2014, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Orchard, C.; Mariveles, M.; Scott, S.; Alshafi, K.; Bilton, D.; Simmonds, N. Effective strategies for managing new Pseudomonas cultures in adults with cystic fibrosis. Eur. Respir. J. 2015, 46, 862–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta, N.; Whelan, F.J.; Somayaji, R.; Poonja, A.; Surette, M.G.; Rabin, H.R.; Parkins, M.D. The Evolving Cystic Fibrosis Microbiome: A Comparative Cohort Study Spanning 16 Years. Ann. Am. Thorac. Soc. 2017, 14, 1288–1297. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.; Pressler, T.; Høiby, N. Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. J. Cyst. Fibros. 2008, 7, 523–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, W.; Black, C.; Smith, A. Clinical Implications of Polymicrobial Synergism Effects on Antimicrobial Susceptibility. Pathog. 2021, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Filkins, L.M.; O’Toole, G.A. Cystic Fibrosis Lung Infections: Polymicrobial, Complex, and Hard to Treat. PLOS Pathog. 2015, 11, e1005258. [Google Scholar] [CrossRef] [Green Version]
- Rogers, G.B.; Carroll, M.P.; Serisier, D.J.; Hockey, P.M.; Jones, G.; Bruce, K.D. Characterization of Bacterial Community Diversity in Cystic Fibrosis Lung Infections by Use of 16S Ribosomal DNA Terminal Restriction Fragment Length Polymorphism Profiling. J. Clin. Microbiol. 2004, 42, 5176–5183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibley, C.D.; Parkins, M.D.; Rabin, H.R.; Duan, K.; Norgaard, J.C.; Surette, M.G. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 2008, 105, 15070–15075. [Google Scholar] [CrossRef] [Green Version]
- Rogers, G.B.; Hart, C.A.; Mason, J.R.; Hughes, M.; Walshaw, M.J.; Bruce, K.D.; Rogers, G.B.; Hart, C.A.; Mason, J.R.; Hughes, M.; et al. Bacterial Diversity in Cases of Lung Infection in Cystic Fibrosis Patients: 16S Ribosomal DNA (rDNA) Length Heterogeneity PCR and 16S rDNA Terminal Restriction Fragment Length Polymorphism Profiling. J. Clin. Microbiol. 2003, 41, 3548–3558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Quinn, R.; Whiteson, K.; Lim, Y.W.; Zhao, J.; Conrad, D.; LiPuma, J.J.; Rohwer, F.; Widder, S. Ecological networking of cystic fibrosis lung infections. NPJ Biofilms Microbiomes 2016, 2, 1–11. [Google Scholar] [CrossRef]
- DePas, W.; Starwalt-Lee, R.; Van Sambeek, L.; Kumar, S.R.; Gradinaru, V.; Newman, D.K. Exposing the Three-Dimensional Biogeography and Metabolic States of Pathogens in Cystic Fibrosis Sputum via Hydrogel Embedding, Clearing, and rRNA Labeling. mBio 2016, 7, e00796-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, J.-C.; Marchesi, J.; Mougel, C.; Selosse, M.-A. Host-microbiota interactions: From holobiont theory to analysis. Microbiome 2019, 7, 1–5. [Google Scholar] [CrossRef]
- Bordenstein, S.R.; Theis, K.R. Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. PLoS Biol. 2015, 13, e1002226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guss, A.M.; Roeselers, G.; Newton, I.L.G.; Young, C.R.; Klepac-Ceraj, V.; Lory, S.; Cavanaugh, C.M. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 2010, 5, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Zolin, A.; Orenti, A.; Naehrlich, L.; Jung, A.; van Rens, J.; Fox, A.; Krasnyk, M.; Cosgriff, R.; Hatziagorou, E.; Mei-Zahav, M.; et al. ECFS Patient Registry Annual Data Report 2018; European Cystic Fibrosis Society: Karup, Denmark, 2020. [Google Scholar]
- Tunney, M.M.; Field, T.R.; Moriarty, F.; Patrick, S.; Doering, G.; Muhlebach, M.S.; Wolfgang, M.C.; Boucher, R.; Gilpin, D.; McDowell, A.; et al. Detection of Anaerobic Bacteria in High Numbers in Sputum from Patients with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2008, 177, 995–1001. [Google Scholar] [CrossRef]
- Worlitzsch, D.; Tarran, R.; Ulrich, M.; Schwab, U.; Cekici, A.; Meyer, K.C.; Birrer, P.; Bellon, G.; Berger, J.; Weiss, T.; et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Investig. 2002, 109, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Frayman, K.B.; Armstrong, D.S.; Carzino, R.; Ferkol, T.W.; Grimwood, K.; A Storch, G.; Teo, S.M.; Wylie, K.M.; Ranganathan, S.C. The lower airway microbiota in early cystic fibrosis lung disease: A longitudinal analysis. Thorax 2017, 72, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Schloss, P.; Kalikin, L.M.; Carmody, L.A.; Foster, B.K.; Petrosino, J.F.; Cavalcoli, J.D.; VanDevanter, D.; Murray, S.; Li, J.Z.; et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc. Natl. Acad. Sci. USA 2012, 109, 5809–5814. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.-L.; Szafrański, S.P.; Jarek, M.; Bhuju, S.; Wagner-Döbler, I. Dysbiosis in chronic periodontitis: Key microbial players and interactions with the human host. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Zhang, J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017, 18, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuthbertson, L.; Walker, A.W.; Oliver, A.E.; Rogers, G.B.; Rivett, D.W.; Hampton, T.H.; Ashare, A.; Elborn, J.S.; De Soyza, A.; Carroll, M.P.; et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome 2020, 8, 45. [Google Scholar] [CrossRef]
- Dickson, R.P.; Erb-Downward, J.R.; Huffnagle, G.B. Towards an ecology of the lung: New conceptual models of pulmonary microbiology and pneumonia pathogenesis. Lancet Respir. Med. 2014, 2, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Jorth, P.; Staudinger, B.J.; Wu, X.; Hisert, K.B.; Hayden, H.; Garudathri, J.; Harding, C.L.; Radey, M.C.; Rezayat, A.; Bautista, G.; et al. Regional Isolation Drives Bacterial Diversification within Cystic Fibrosis Lungs. Cell Host Microbe 2015, 18, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, F.J.; Salamat, S.; Clayton, S.; Peach, J.; Alexander, J.; Lenney, W. Bronchoalveolar lavage in children with cystic fibrosis: How many lobes should be sampled? Arch. Dis. Child. 2010, 96, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Huffnagle, G.B. The Lung Microbiome: New Principles for Respiratory Bacteriology in Health and Disease. PLOS Pathog. 2015, 11, e1004923. [Google Scholar] [CrossRef]
- Saladié, M.; Caparrós-Martín, J.A.; Agudelo-Romero, P.; Wark, P.A.B.; Stick, S.M.; O’Gara, F. Microbiomic Analysis on Low Abundant Respiratory Biomass Samples; Improved Recovery of Microbial DNA From Bronchoalveolar Lavage Fluid. Front. Microbiol. 2020, 11, 572504. [Google Scholar] [CrossRef] [PubMed]
- Schneeberger, P.H.H.; Prescod, J.; Levy, L.; Hwang, D.; Martinu, T.; Coburn, B. Microbiota analysis optimization for human bronchoalveolar lavage fluid. Microbiome 2019, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; Bouffard, G.G.; Blakesley, R.W.; Murray, P.R.; Green, E.D.; et al. Topographical and Temporal Diversity of the Human Skin Microbiome. Science 2009, 324, 1190–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, X.C.; Huttenhower, C. Chapter 12: Human microbiome analysis. PLoS Comput. Biol. 2012, 8, e1002808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armougom, F.; Bittar, F.; Stremler, N.; Rolain, J.-M.; Robert, C.; Dubus, J.-C.; Sarles, J.; Raoult, D.; La Scola, B. Microbial diversity in the sputum of a cystic fibrosis patient studied with 16S rDNA pyrosequencing. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 1151–1154. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; De Groote, M.A.; Sagel, S.D.; Zemanick, E.; Kapsner, R.; Penvari, C.; Kaess, H.; Deterding, R.R.; Accurso, F.J.; Pace, N.R. Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc. Natl. Acad. Sci. USA 2007, 104, 20529–20533. [Google Scholar] [CrossRef] [Green Version]
- Chmiel, J.F.; Davis, P.B. State of the Art. Why do the lungs of patients with cystic fibrosis become infected and why can’t they clear the infection? Respir. Res. 2003, 4, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Momani, H.; Perry, A.; Stewart, C.; Jones, R.; Krishnan, A.; Robertson, A.G.; Bourke, S.; Doe, S.; Cummings, S.; Anderson, A.; et al. Microbiological profiles of sputum and gastric juice aspirates in Cystic Fibrosis patients. Sci. Rep. 2016, 6, 26985. [Google Scholar] [CrossRef] [PubMed]
- Bonestroo, H.J.; Groot, K.M.D.W.-D.; van der Ent, C.K.; Arets, H.G. Upper and lower airway cultures in children with cystic fibrosis: Do not neglect the upper airways. J. Cyst. Fibros. 2010, 9, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmody, L.A.; Zhao, J.; Schloss, P.; Petrosino, J.F.; Murray, S.; Young, V.B.; Li, J.Z.; Lipuma, J.J. Changes in Cystic Fibrosis Airway Microbiota at Pulmonary Exacerbation. Ann. Am. Thorac. Soc. 2013, 10, 179–187. [Google Scholar] [CrossRef]
- E Price, K.; Hampton, T.H.; Gifford, A.H.; Dolben, E.L.; Hogan, D.A.; Morrison, H.G.; Sogin, M.L.; A O’Toole, G. Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation. Microbiome 2013, 1, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stressmann, F.A.; Rogers, G.B.; Marsh, P.; Lilley, A.K.; Daniels, T.W.; Carroll, M.P.; Hoffman, L.R.; Jones, G.; Allen, C.E.; Patel, N.; et al. Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation? J. Cyst. Fibros. 2011, 10, 357–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhlebach, M.S.; Sha, W.; MacIntosh, B.; Kelley, T.J.; Muenzer, J. Metabonomics reveals altered metabolites related to inflammation and energy utilization at recovery of cystic fibrosis lung exacerbation. Metab. Open 2019, 3, 100010. [Google Scholar] [CrossRef]
- Zhou, H.; Hylemon, P.B. Bile acids are nutrient signaling hormones. Steroids 2014, 86, 62–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Françoise, A.; Héry-Arnaud, G. The Microbiome in Cystic Fibrosis Pulmonary Disease. Genes 2020, 11, 536. [Google Scholar] [CrossRef] [PubMed]
- Bevivino, A.; Bacci, G.; Drevinek, P.; Nelson, M.; Hoffman, L.; Mengoni, A. Deciphering the Ecology of Cystic Fibrosis Bacterial Communities: Towards Systems-Level Integration. Trends Mol. Med. 2019, 25, 1110–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutin, S.; Graeber, S.Y.; Stahl, M.; Dittrich, A.S.; Mall, M.A.; Dalpke, A.H. Chronic but not intermittent infection with Pseudomonas aeruginosa is associated with global changes of the lung microbiome in cystic fibrosis. Eur. Respir. J. 2017, 50, 1701086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittman, J.E.; Wylie, K.M.; Akers, K.; Storch, G.A.; Hatch, J.; Quante, J.; Frayman, K.B.; Clarke, N.; Davis, M.; Stick, S.M.; et al. Association of Antibiotics, Airway Microbiome, and Inflammation in Infants with Cystic Fibrosis. Ann. Am. Thorac. Soc. 2017, 14, 1548–1555. [Google Scholar] [CrossRef]
- Scales, B.S.; Dickson, R.P.; Huffnagle, G.B. A tale of two sites: How inflammation can reshape the microbiomes of the gut and lungs. J. Leukoc. Biol. 2016, 100, 943–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heirali, A.; McKeon, S.; Purighalla, S.; Storey, D.; Rossi, L.; Costilhes, G.; Drews, S.J.; Rabin, H.R.; Surette, M.G.; Parkins, M.D. Assessment of the Microbial Constituents of the Home Environment of Individuals with Cystic Fibrosis (CF) and Their Association with Lower Airways Infections. PLOS ONE 2016, 11, e0148534. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.J.; Badrick, A.C.; Zakrzewski, M.; Krause, L.; Bell, S.C.; Anderson, G.J.; Reid, D.W. Pyrosequencing reveals transient cystic fibrosis lung microbiome changes with intravenous antibiotics. Eur. Respir. J. 2014, 44, 922–930. [Google Scholar] [CrossRef] [Green Version]
- Fodor, A.A.; Klem, E.R.; Gilpin, D.; Elborn, J.; Boucher, R.C.; Tunney, M.; Wolfgang, M.C. The Adult Cystic Fibrosis Airway Microbiota Is Stable over Time and Infection Type, and Highly Resilient to Antibiotic Treatment of Exacerbations. PLoS ONE 2012, 7, e45001. [Google Scholar] [CrossRef]
- A Carmody, L.; Zhao, J.; Kalikin, L.M.; Lebar, W.; Simon, R.H.; Venkataraman, A.; Schmidt, T.M.; Abdo, Z.; Schloss, P.D.; Lipuma, J.J. The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation. Microbiome 2015, 3, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, A.F. Bile Acids: The Good, the Bad, and the Ugly. News Physiol. Sci. 1999, 14, 24–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B.; Bajaj, J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014, 30, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallim, T.Q.D.A.; Tarling, E.J.; Edwards, P.A. Pleiotropic Roles of Bile Acids in Metabolism. Cell Metab. 2013, 17, 657–669. [Google Scholar] [CrossRef] [Green Version]
- Pauwels, A.; Decraene, A.; Blondeau, K.; Mertens, V.; Farre, R.; Proesmans, M.; Van Bleyenbergh, P.; Sifrim, D.; Dupont, L.J. Bile Acids in Sputum and Increased Airway Inflammation in Patients With Cystic Fibrosis. Chest 2012, 141, 1568–1574. [Google Scholar] [CrossRef]
- Brodlie, M.; Aseeri, A.; Lordan, J.L.; Robertson, A.G.; McKean, M.C.; Corris, P.A.; Griffin, S.M.; Manning, N.J.; Pearson, J.P.; Ward, C. Bile acid aspiration in people with cystic fibrosis before and after lung transplantation. Eur. Respir. J. 2015, 46, 1820–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reen, F.J.; Woods, D.F.; Mooij, M.J.; Chróinín, M.N.; Mullane, D.; Zhou, L.; Quille, J.; Fitzpatrick, D.; Glennon, J.D.; McGlacken, G.P.; et al. Aspirated bile: A major host trigger modulating respiratory pathogen colonisation in cystic fibrosis patients. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1763–1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondeau, K.; Dupont, L.J.; Mertens, V.; Verleden, G.; Malfroot, A.; Vandenplas, Y.; Hauser, B.; Sifrim, D. Gastro-oesophageal reflux and aspiration of gastric contents in adult patients with cystic fibrosis. Gut 2008, 57, 1049–1055. [Google Scholar] [CrossRef]
- Reen, F.J.; Flynn, S.; Woods, D.F.; Dunphy, N.; Chróinín, M.N.; Mullane, D.; Stick, S.; Adams, C.; O’Gara, F. Bile signalling promotes chronic respiratory infections and antibiotic tolerance. Sci. Rep. 2016, 6, 29768. [Google Scholar] [CrossRef] [Green Version]
- Flynn, S.; Reen, F.J.; Caparrós-Martín, J.A.; Woods, D.F.; Peplies, J.; Ranganathan, S.C.; Stick, S.M.; O’Gara, F. Bile Acid Signal Molecules Associate Temporally with Respiratory Inflammation and Microbiome Signatures in Clinically Stable Cystic Fibrosis Patients. Microorganisms 2020, 8, 1741. [Google Scholar] [CrossRef]
- Caparrós-Martín, J.A.; Flynn, S.; Reen, F.J.; Woods, D.F.; Agudelo-Romero, P.; Ranganathan, S.C.; Stick, S.M.; O’Gara, F. The Detection of Bile Acids in the Lungs of Paediatric Cystic Fibrosis Patients Is Associated with Altered Inflammatory Patterns. Diagnostics 2020, 10, 282. [Google Scholar] [CrossRef]
- Vos, R.; Blondeau, K.; Vanaudenaerde, B.M.; Mertens, V.; Van Raemdonck, D.E.; Sifrim, D.; Dupont, L.J.; Verleden, G.M. Airway Colonization and Gastric Aspiration After Lung Transplantation: Do Birds of a Feather Flock Together? J. Hear. Lung Transplant. 2008, 27, 843–849. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, J.; Lu, C.; Hsin, M.; Mura, M.; Wu, L.; Chu, L.; Zamel, R.; Machuca, T.; Waddell, T.; et al. Metabolomic Heterogeneity of Pulmonary Arterial Hypertension. PLoS ONE 2014, 9, e88727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zecca, E.; De Luca, D.; Baroni, S.; Vento, G.; Tiberi, E.; Romagnoli, C. Bile Acid-Induced Lung Injury in Newborn Infants: A Bronchoalveolar Lavage Fluid Study. Pediatrics 2008, 121, e146–e149. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.; Mulcahy, H.; Fenlon, H.; O’Broin, A.; Casey, M.; Burke, A.; Fitzgerald, M.X.; E Hegarty, J. Intestinal bile acid malabsorption in cystic fibrosis. Gut 1993, 34, 1137–1141. [Google Scholar] [CrossRef] [Green Version]
- Aseeri, A.; Brodlie, M.; Lordan, J.; Corris, P.; Pearson, J.; Ward, C.; Manning, N. Bile Acids Are Present in the Lower Airways of People with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2012, 185, 463. [Google Scholar] [CrossRef]
- Neujahr, D.C.; Uppal, K.; Force, S.D.; Fernandez, F.; Lawrence, C.; Pickens, A.; Bag, R.; Lockard, C.; Kirk, A.D.; Tran, V.; et al. Bile acid aspiration associated with lung chemical profile linked to other biomarkers of injury after lung transplantation. Arab. Archaeol. Epigr. 2014, 14, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, S.I.; Ryan-Wenger, N.A.; McCoy, K.S. Outcomes of surgical management of severe GERD in patients with cystic fibrosis. Pediatr. Pulmonol. 2013, 48, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Fernando, H.C.; El-Sherif, A.; Landreneau, R.J.; Gilbert, S.; Christie, N.A.; Buenaventura, P.O.; Close, J.M.; Luketich, J.D. Efficacy of laparoscopic fundoplication in controlling pulmonary symptoms associated with gastroesophageal reflux disease. Surgery 2005, 138, 612–617. [Google Scholar] [CrossRef]
- Hoppo, T.; Jarido, V.; Pennathur, A.; Morrell, M.; Crespo, M.; Shigemura, N.; Bermudez, C.; Hunter, J.G.; Toyoda, Y.; Pilewski, J.; et al. Antireflux Surgery Preserves Lung Function in Patients With Gastroesophageal Reflux Disease and End-stage Lung Disease Before and After Lung Transplantation. Arch. Surg. 2011, 146, 1041–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, S.; Quach, J.; McCoy, K. Nissen Fundoplication in Patients With Cystic Fibrosis and Severe GERD. Impact on Lung Disease. Chest 2011, 140, 906A. [Google Scholar] [CrossRef]
- Fathi, H.; Moon, T.; Donaldson, J.; Jackson, W.; Sedman, P.; Morice, A.H. Cough in adult cystic fibrosis: Diagnosis and response to fundoplication. Cough 2009, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweet, M.P.; Patti, M.G.; Hoopes, C.; Hays, S.R.; A Golden, J. Gastro-oesophageal reflux and aspiration in patients with advanced lung disease. Thorax 2009, 64, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, W.-J.; Lee, J.H.; Kwon, Y.S.; Lee, K.S.; Suh, G.Y.; Chung, M.P.; Kim, H.; Kwon, O.J. Prevalence of Gastroesophageal Reflux Disease in Patients With Nontuberculous Mycobacterial Lung Disease. Chest 2007, 131, 1825–1830. [Google Scholar] [CrossRef] [PubMed]
- Button, B.M.; Roberts, S.; Kotsimbos, T.C.; Levvey, B.; Williams, T.J.; Bailey, M.; Snell, G.I.; Wilson, J.W. Gastroesophageal Reflux (Symptomatic and Silent): A Potentially Significant Problem in Patients With Cystic Fibrosis Before and After Lung Transplantation. J. Hear. Lung Transplant. 2005, 24, 1522–1529. [Google Scholar] [CrossRef] [PubMed]
- Salvioli, B.; Belmonte, G.; Stanghellini, V.; Baldi, E.; Fasano, L.; Pacilli, A.; de Giorgio, R.; Barbara, G.; Bini, L.; Cogliandro, R. Gastro-oesophageal reflux and interstitial lung disease. Dig. Liver Dis. 2006, 38, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Dziekiewicz, M.A.; Banaszkiewicz, A.; Urzykowska, A.; Lisowska, A.; Rachel, M.; Sands, D.; Walkowiak, J.; Radzikowski, A.; Albrecht, P. Gastroesophageal Reflux Disease in Children with Cystic Fibrosis. Adv. Exp. Med. Biol. 2015, 873, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-R.; Li, Z.-S.; Zou, D.-W.; Xu, G.-M.; Ye, P.; Sun, Z.-X.; Wang, Q.; Zeng, Y.-J. Role of Duodenogastroesophageal Reflux in the Pathogenesis of Esophageal Mucosal Injury and Gastroesophageal Reflux Symptoms. Can. J. Gastroenterol. 2006, 20, 91–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reder, N.P.; Davis, C.S.; Kovacs, E.J.; Fisichella, P.M. The diagnostic value of gastroesophageal reflux disease (GERD) symptoms and detection of pepsin and bile acids in bronchoalveolar lavage fluid and exhaled breath condensate for identifying lung transplantation patients with GERD-induced aspiration. Surg. Endosc. 2014, 28, 1794–1800. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, K.; Fändriks, L.; Strandvik, B. Duodenogastric Bile Reflux Is Common in Cystic Fibrosis. J. Pediatr. Gastroenterol. Nutr. 2004, 38, 312–316. [Google Scholar] [CrossRef]
- Gouynou, C.; Philit, F.; Mion, F.; Tronc, F.; Sénéchal, A.; Giai, J.; Rabain, A.-M.; Mornex, J.-F.; Roman, S. Esophageal Motility Disorders Associated With Death or Allograft Dysfunction After Lung Transplantation? Results of a Retrospective Monocentric Study. Clin. Transl. Gastroenterol. 2020, 11, e00137. [Google Scholar] [CrossRef] [PubMed]
- Woodley, F.W.; Jr, D.H.; Kopp, B.T.; Moore-Clingenpeel, M.; Machado, R.S.; Nemastil, C.J.; Jadcherla, S.; Di Lorenzo, C.; Kaul, A.; Mousa, H. Gastroesophageal reflux in cystic fibrosis across the age spectrum. Transl. Gastroenterol. Hepatol. 2019, 4, 69. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, A.; Blondeau, K.; Dupont, L.J.; Sifrim, D. Mechanisms of Increased Gastroesophageal Reflux in Patients With Cystic Fibrosis. Am. J. Gastroenterol. 2012, 107, 1346–1353. [Google Scholar] [CrossRef]
- Lee, A.S.; Lee, J.S.; He, Z.; Ryu, J.H. Reflux-Aspiration in Chronic Lung Disease. Ann. Am. Thorac. Soc. 2020, 17, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Feigelson, J.; Sauvegrain, J. Letter: Gastro-esophageal reflux in mucoviscidosis. La Nouv. Press. Med. 1975, 4, 2729–2730. [Google Scholar]
- McDonnell, M.J.; Hunt, E.B.; Ward, C.; Pearson, J.P.; O’Toole, D.; Laffey, J.G.; Murphy, D.M.; Rutherford, R.M. Current therapies for gastro-oesophageal reflux in the setting of chronic lung disease: State of the art review. ERJ Open Res. 2020, 6, 00190–02019. [Google Scholar] [CrossRef]
- Navarro, J.; Rainisio, M.; Harms, H.; Hodson, M.; Koch, C.; Mastella, G.; Strandvik, B.; McKenzie, S. Factors associated with poor pulmonary function: Cross-sectional analysis of data from the ERCF. Eur. Respir. J. 2001, 18, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweet, M.P.; Hoopes, C.; Golden, J.; Hays, S.; Leard, L.; Patti, M. Prevalence of Delayed Gastric Emptying and Gastroesophageal Reflux in Patients With End-Stage Lung Disease. Ann. Thorac. Surg. 2006, 82, 1570–1571. [Google Scholar] [CrossRef] [PubMed]
- Sweet, M.P.; Patti, M.G.; Leard, L.E.; Golden, J.A.; Hays, S.R.; Hoopes, C.; Theodore, P.R. Gastroesophageal reflux in patients with idiopathic pulmonary fibrosis referred for lung transplantation. J. Thorac. Cardiovasc. Surg. 2007, 133, 1078–1084. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-C.; Hsu, P.-K.; Su, K.-C.; Liu, L.-Y.; Tsai, C.-C.; Tsai, S.-H.; Hsu, W.-H.; Lee, Y.-C.; Perng, D.-W. Bile Acid Aspiration in Suspected Ventilator-Associated Pneumonia. Chest 2009, 136, 118–124. [Google Scholar] [CrossRef]
- Nassr, A.O.; Gilani, S.N.S.; Atie, M.; Abdelhafiz, T.; Connolly, V.; Hickey, N.; Walsh, T.N. Does Impaired Gallbladder Function Contribute to the Development of Barrett’s Esophagus and Esophageal Adenocarcinoma? J. Gastrointest. Surg. 2011, 15, 908–914. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Sonnenberg, A. Associations between different forms of gastro-oesophageal reflux disease. Gut 1997, 41, 594–599. [Google Scholar] [CrossRef]
- Mousa, H.M.; Woodley, F.W. Gastroesophageal Reflux in Cystic Fibrosis: Current Understandings of Mechanisms and Management. Curr. Gastroenterol. Rep. 2012, 14, 226–235. [Google Scholar] [CrossRef]
- van der Doef, H.P.; Arets, H.G.; Froeling, S.P.; Westers, P.; Houwen, R.H. Gastric Acid Inhibition for Fat Malabsorption or Gastroesophageal Reflux Disease in Cystic Fibrosis: Longitudinal Effect on Bacterial Colonization and Pulmonary Function. J. Pediatr. 2009, 155, 629–633. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, F.; Savarese, M.F.; Atteo, E.; A Leone, C.; Cuomo, R. Medical treatment of gastro-oesophageal reflux disease. Acta Otorhinolaryngol. Ital. 2006, 26, 276–280. [Google Scholar] [PubMed]
- Franciosa, M.; Triadafilopoulos, G.; Mashimo, H. Stretta Radiofrequency Treatment for GERD: A Safe and Effective Modality. Gastroenterol. Res. Pr. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Ng, J.; Friedmacher, F.; Pao, C.; Charlesworth, P. Gastroesophageal Reflux Disease and Need for Antireflux Surgery in Children with Cystic Fibrosis: A Systematic Review on Incidence, Surgical Complications, and Postoperative Outcomes. Eur. J. Pediatr. Surg. 2021, 31, 106–114. [Google Scholar] [CrossRef]
- Mendez, B.M.; Davis, C.S.; Weber, C.; Joehl, R.J.; Fisichella, P.M. Gastroesophageal reflux disease in lung transplant patients with cystic fibrosis. Am. J. Surg. 2012, 204, e21–e26. [Google Scholar] [CrossRef] [PubMed]
- Doumit, M.; Krishnan, U.; Jaffe, A.; Belessis, Y. Acid and non-acid reflux during physiotherapy in young children with cystic fibrosis. Pediatr. Pulmonol. 2011, 47, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, A.; Blondeau, K.; Mertens, V.; Farre, R.; Verbeke, K.; Dupont, L.J.; Sifrim, D. Gastric emptying and different types of reflux in adult patients with cystic fibrosis. Aliment. Pharmacol. Ther. 2011, 34, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Sabati, A.A.; Kempainen, R.R.; Milla, C.; Ireland, M.; Schwarzenberg, S.J.; Dunitz, J.M.; Khan, K.M. Characteristics of gastroesophageal reflux in adults with cystic fibrosis. J. Cyst. Fibros. 2010, 9, 365–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ovidio, F.; Singer, L.G.; Hadjiliadis, D.; Pierre, A.; Waddell, T.K.; de Perrot, M.; Hutcheon, M.; Miller, L.; Darling, G.; Keshavjee, S. Prevalence of Gastroesophageal Reflux in End-Stage Lung Disease Candidates for Lung Transplant. Ann. Thorac. Surg. 2005, 80, 1254–1260. [Google Scholar] [CrossRef]
- Benden, C.; Aurora, P.; Curry, J.; Whitmore, P.; Priestley, L.; Elliott, M.J. High prevalence of gastroesophageal reflux in children after lung transplantation. Pediatr. Pulmonol. 2005, 40, 68–71. [Google Scholar] [CrossRef]
- Brodzicki, J.; Trawińska-Bartnicka, M.; Korzon, M. Frequency, consequences and pharmacological treatment of gastroesophageal reflux in children with cystic fibrosis. Med. Sci. Monit. 2002, 8, 529–537. [Google Scholar]
- Blondeau, K.; Pauwels, A.; Dupont, L.; Mertens, V.; Proesmans, M.; Orel, R.; Brecelj, J.; López-Alonso, M.; Moya, M.; Malfroot, A.; et al. Characteristics of Gastroesophageal Reflux and Potential Risk of Gastric Content Aspiration in Children With Cystic Fibrosis. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, K.; Mertens, V.; Vanaudenaerde, B.A.; Verleden, G.M.; Van Raemdonck, D.E.; Sifrim, D.; Dupont, L.J. Gastro-oesophageal reflux and gastric aspiration in lung transplant patients with or without chronic rejection. Eur. Respir. J. 2008, 31, 707–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliaz, S.; Iliaz, R.; Onur, S.T.; Arici, S.; Akyuz, U.; Karaca, C.; Demir, K.; Besisik, F.; Kaymakoglu, S.; Akyuz, F. Does gastroesophageal reflux increase chronic obstructive pulmonary disease exacerbations? Respir. Med. 2016, 115, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grande, L.D.M.D.; Herbella, F.A.M.; Bigatao, A.M.; Abrao, H.; Jardim, J.R.; Patti, M.G. Pathophysiology of Gastroesophageal Reflux in Patients with Chronic Pulmonary Obstructive Disease Is Linked to an Increased Transdiaphragmatic Pressure Gradient and not to a Defective Esophagogastric Barrier. J. Gastrointest. Surg. 2015, 20, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Benson, V.S.; Müllerová, H.; Vestbo, J.; Wedzicha, J.A.; Patel, A.; Hurst, J.R. Associations between gastro-oesophageal reflux, its management and exacerbations of chronic obstructive pulmonary disease. Respir. Med. 2015, 109, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Ingebrigtsen, T.S.; Marott, J.L.; Vestbo, J.; Nordestgaard, B.G.; Hallas, J.; Lange, P. Gastro-esophageal reflux disease and exacerbations in chronic obstructive pulmonary disease. Respirology 2015, 20, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.H.; Kim, Y.; Kim, K.; Oh, Y.-M.; Yoo, K.H.; Rhee, C.K.; Yoon, H.K.; Kim, Y.S.; Park, Y.B.; et al. Association between chronic obstructive pulmonary disease and gastroesophageal reflux disease: A national cross-sectional cohort study. BMC Pulm. Med. 2013, 13, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, B.; Wang, M.; Yi, Q.; Feng, Y. Association of gastroesophageal reflux disease risk with exacerbations of chronic obstructive pulmonary disease. Dis. Esophagus 2013, 26, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Gadel, A.A.; Mostafa, M.; Younis, A.; Haleem, M. Esophageal motility pattern and gastro-esophageal reflux in chronic obstructive pulmonary disease. Hepatogastroenterology 2012, 59, 2498–2502. [Google Scholar] [CrossRef]
- Kamble, N.L.; Khan, N.A.; Kumar, N.; Nayak, H.K.; Daga, M.K. Study of gastro-oesophageal reflux disease in patients with mild-to-moderate chronic obstructive pulmonary disease in India. Respirology 2013, 18, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.-M.; Feng, Y.-L. Association of Gastroesophageal Reflux Disease Symptoms with Stable Chronic Obstructive Pulmonary Disease. Lung 2012, 190, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Kempainen, R.R.; Savik, K.; Whelan, T.P.; Dunitz, J.M.; Herrington, C.S.; Billings, J.L. High Prevalence of Proximal and Distal Gastroesophageal Reflux Disease in Advanced COPD. Chest 2007, 131, 1666–1671. [Google Scholar] [CrossRef] [PubMed]
- Rascon-Aguilar, I.E.; Pamer, M.; Wludyka, P.; Cury, J.; Coultas, D.; Lambiase, L.R.; Nahman, N.S.; Vega, K.J. Role of Gastroesophageal Reflux Symptoms in Exacerbations of COPD. Chest 2006, 130, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Mokhlesi, B.; Morris, A.L.; Huang, C.-F.; Curcio, A.J.; Barrett, T.; Kamp, D.W. Increased Prevalence of Gastroesophageal Reflux Symptoms in Patients With COPD. Chest 2001, 119, 1043–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.L.; Button, B.M.; Denehy, L.; Roberts, S.; Bamford, T.; Mu, F.-T.; Mifsud, N.; Stirling, R.; Wilson, J.W. Exhaled Breath Condensate Pepsin: Potential Noninvasive Test for Gastroesophageal Reflux in COPD and Bronchiectasis. Respir. Care 2014, 60, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.L.; Button, B.M.; Denehy, L.; Roberts, S.J.; Bamford, T.L.; Ellis, S.J.; Mu, F.-T.; Heine, R.G.; Stirling, R.G.; Wilson, J.W. Proximal and distal gastro-oesophageal reflux in chronic obstructive pulmonary disease and bronchiectasis. Respirology 2014, 19, 211–217. [Google Scholar] [CrossRef]
- Acharya, P.R. Prevalence and Spectrum of Gastro Esophageal Reflux Disease in Bronchial Asthma. J. Clin. Diagn. Res. 2015, 9, OC11-4. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Yi, Q.; Feng, Y. Association of gastroesophageal reflux disease with asthma control. Dis. Esophagus 2013, 26, 794–798. [Google Scholar] [CrossRef]
- Jaimchariyatam, N.; Wongtim, S.; Udompanich, V.; Sittipunt, C.; Kawkitinarong, K.; Chaiyakul, S.; Gonlachanvit, S. Prevalence of gastroesophageal reflux in Thai asthmatic patients. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2011, 94, 671–678. [Google Scholar]
- Elbl, B.; Birkenfeld, B.; Szymanowicz, J.; Piwowarska-Bilska, H.; Urasiński, T.; Listewnik, M.; Gwardyś, A. The association between gastroesophageal reflux and recurrent lower respiratory tract infections and bronchial asthma in children. Ann. Acad. Medicae Stetin. 2010, 56, 13–19. [Google Scholar]
- DiMango, E.; Holbrook, J.T.; Simpson, E.; Reibman, J.; Richter, J.; Narula, S.; Prusakowski, N.; Mastronarde, J.G.; Wise, R.A. Effects of Asymptomatic Proximal and Distal Gastroesophageal Reflux on Asthma Severity. Am. J. Respir. Crit. Care Med. 2009, 180, 809–816. [Google Scholar] [CrossRef]
- Debley, J.S.; Carter, E.R.; Redding, G.J. Prevalence and impact of gastroesophageal reflux in adolescents with asthma: A population-based study. Pediatr. Pulmonol. 2006, 41, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Farcău, D.; Dreghiciu, D.; Cherecheş-Panţa, P.; Popa, M.; Farcău, M.; Nanulescu, M. Gastroesophageal reflux in asthmatic children: Prevalence and pathogenic role. Pneumologia 2005, 53, 127–131. [Google Scholar]
- Kiljander, T.O.; Laitinen, J.O. The Prevalence of Gastroesophageal Reflux Disease in Adult Asthmatics. Chest 2004, 126, 1490–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ay, M.; Sivasli, E.; Bayraktaroglu, Z.; Ceylan, H.; Coskun, Y. Association of asthma with gastroesophageal reflux disease in children. J. Chin. Med Assoc. 2004, 67, 63–66. [Google Scholar]
- Cinquetti, M.; Micelli, S.; Voltolina, C.; Zoppi, G. The Pattern of Gastroesophageal Reflux in Asthmatic Children. J. Asthma 2002, 39, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, O.; Battaglia, M.; Galos, F.; Aloi, M.; De Angelis, D.; Moretti, C.; Mancini, V.; Cucchiara, S.; Midulla, F. Non-acid gastro-oesophageal reflux in children with suspected pulmonary aspiration. Dig. Liver Dis. 2010, 42, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Pavić, I.; Čepin-Bogović, J.; Hojsak, I. The Relationship Between Gastroesophageal Reflux and Chronic Unexplained Cough in Children. Clin. Pediatr. 2015, 55, 639–644. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, S.-Y.; Cho, S.-B.; Lee, W.-S.; Park, C.-H.; Koh, Y.-I.; Joo, Y.-E.; Kim, H.-S.; Choi, S.-K.; Rew, J.-S. Reflux Episode Reaching the Proximal Esophagus Are Associated with Chronic Cough. Gut Liver 2012, 6, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, O.; Marabotto, C.; Mancini, V.; Aloi, M.; Macrì, F.; Falconieri, P.; Lindley, K.J.; Cucchiara, S. Role of Gastroesophageal Reflux in Children With Unexplained Chronic Cough. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, K.; Mertens, V.; Dupont, L.; Pauwels, A.; Farré, R.; Malfroot, A.; De Wachter, E.; De Schutter, I.; Hauser, B.; Vandenplas, Y.; et al. The relationship between gastroesophageal reflux and cough in children with chronic unexplained cough using combined impedance-pH-manometry recordings. Pediatr. Pulmonol. 2011, 46, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Patterson, N.; Mainie, I.; Rafferty, G.; McGarvey, L.; Heaney, L.; Tutuian, R.; Castell, D.; Johnston, B.T. Nonacid Reflux Episodes Reaching the Pharynx are Important Factors Associated With Cough. J. Clin. Gastroenterol. 2009, 43, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Urita, Y.; Watanabe, T.; Ota, H.; Iwata, M.; Sasaki, Y.; Maeda, T.; Ishii, T.; Nanami, M.; Nakayama, A.; Kato, H.; et al. High prevalence of gastroesophageal reflux symptoms in patients with both acute and nonacute cough. Int. J. Gen. Med. 2008, 1, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, K.; Dupont, L.J.; Mertens, V.; Tack, J.; Sifrim, D. Improved diagnosis of gastro-oesophageal reflux in patients with unexplained chronic cough. Aliment. Pharmacol. Ther. 2007, 25, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Sifrim, D.; Dupont, L.; Blondeau, K.; Zhang, X.; Tack, J.; Janssens, J. Weakly acidic reflux in patients with chronic unexplained cough during 24 hour pressure, pH, and impedance monitoring. Gut 2005, 54, 449–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özdemir, P.; Erdinç, M.; Vardar, R.; Veral, A.; Akyıldız, S.; Özdemir, Ö.; Bor, S. The Role of Microaspiration in the Pathogenesis of Gastroesophageal Reflux-related Chronic Cough. J. Neurogastroenterol. Motil. 2017, 23, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabowski, M.; Kasran, A.; Seys, S.; Pauwels, A.; Medrala, W.; Dupont, L.; Panaszek, B.; A Bullens, D.M. Pepsin and bile acids in induced sputum of chronic cough patients. Respir. Med. 2011, 105, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Decalmer, S.; Stovold, R.; Houghton, L.; Pearson, J.; Ward, C.; Kelsall, A.; Jones, H.; McGuinness, K.; Woodcock, A.; Smith, J.A. Chronic Cough. Chest 2012, 142, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Allaix, M.E.; Rebecchi, F.; Morino, M.; Schlottmann, F.; Patti, M.G. Gastroesophageal Reflux and Idiopathic Pulmonary Fibrosis. World J. Surg. 2017, 41, 1691–1697. [Google Scholar] [CrossRef] [PubMed]
- Gavini, S.; Finn, R.; Lo, W.-K.; Goldberg, H.J.; Burakoff, R.; Feldman, N.; Chan, W.W. Idiopathic pulmonary fibrosis is associated with increased impedance measures of reflux compared to non-fibrotic disease among prelung transplant patients. Neurogastroenterol. Motil. 2015, 27, 1326–1332. [Google Scholar] [CrossRef]
- Gao, F.; Hobson, A.R.; Shang, Z.M.; Pei, Y.X.; Gao, Y.; Wang, J.X.; Huang, W.N. The prevalence of gastro-esophageal reflux disease and esophageal dysmotility in Chinese patients with idiopathic pulmonary fibrosis. BMC Gastroenterol. 2015, 15, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppo, T.; Komatsu, Y.; Jobe, B.A. Gastroesophageal reflux disease and patterns of reflux in patients with idiopathic pulmonary fibrosis using hypopharyngeal multichannel intraluminal impedance. Dis. Esophagus 2012, 27, 530–537. [Google Scholar] [CrossRef]
- Liang, X.-X.; Shang, Z.-M.; Dai, H.-P.; Huang, W.-N.; Hao, J.-Y. The relationship between gastroesophageal reflux disease and idiopathic pulmonary interstitial fibrosis. Zhonghua Nei Ke Za Zhi 2010, 49, 293–296. [Google Scholar] [PubMed]
- Bandeira, C.D.; Rubin, A.S.; Cardoso, P.F.; Moreira Jda, S.; Machado Mda, M. Prevalence of gastroesophageal reflux disease in patients with idiopathic pulmonary fibrosis. J. Bras. Pneumol. Publicacao Off. Soc. Bras. Pneumol. Tisilogia 2009, 35, 1182–1189. [Google Scholar]
- Savarino, E.; Carbone, R.; Marabotto, E.; Furnari, M.; Sconfienza, L.; Ghio, M.; Zentilin, P.; Savarino, V. Gastro-oesophageal reflux and gastric aspiration in idiopathic pulmonary fibrosis patients. Eur. Respir. J. 2013, 42, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.S.; Mendez, B.M.; Flint, D.V.; Pelletiere, K.; Lowery, E.; Ramirez, L.; Love, R.B.; Kovacs, E.J.; Fisichella, P.M. Pepsin concentrations are elevated in the bronchoalveolar lavage fluid of patients with idiopathic pulmonary fibrosis after lung transplantation. J. Surg. Res. 2013, 185, e101–e108. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, W.; Rausch, T.; Klopfleisch, R.; Blaut, M.; Braune, A. Impact of dietary sulfolipid-derived sulfoquinovose on gut microbiota composition and inflammatory status of colitis-prone interleukin-10-deficient mice. Int. J. Med Microbiol. 2021, 311, 151494. [Google Scholar] [CrossRef] [PubMed]
- Gipson, K.S.; Nickerson, K.P.; Drenkard, E.; Llanos-Chea, A.; Dogiparthi, S.K.; Lanter, B.B.; Hibbler, R.M.; Yonker, L.M.; Hurley, B.P.; Faherty, C.S. The Great ESKAPE: Exploring the Crossroads of Bile and Antibiotic Resistance in Bacterial Pathogens. Infect. Immun. 2020, 88. [Google Scholar] [CrossRef] [PubMed]
- Begley, M.; Gahan, C.G.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005, 29, 625–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merritt, M.E.; Donaldson, J.R. Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J. Med Microbiol. 2009, 58, 1533–1541. [Google Scholar] [CrossRef] [Green Version]
- Reen, F.J.; Woods, D.F.; Mooij, M.J.; Adams, C.; O’Gara, F. Respiratory Pathogens Adopt a Chronic Lifestyle in Response to Bile. PLoS ONE 2012, 7, e45978. [Google Scholar] [CrossRef]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef] [Green Version]
- Amini, S.; Hottes, A.K.; Smith, L.E.; Tavazoie, S. Fitness Landscape of Antibiotic Tolerance in Pseudomonas aeruginosa Biofilms. PLoS Pathog. 2011, 7, e1002298. [Google Scholar] [CrossRef]
- Palm, K.; Sawicki, G.; Rosen, R. The impact of reflux burden on Pseudomonas positivity in children with Cystic Fibrosis. Pediatr. Pulmonol. 2012, 47, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Perry, A.; Robertson, A.; Brodlie, M.; Perry, J.; Corris, P.; Griffin, M.; Gould, K.; Forrest, I.; Pearson, J.; et al. Identical Biofilm Forming Strains of Pseudomonas aeruginosa Occur in Lung Allograft BAL and Gastric Juice from CF Patients with Gastro Oesophageal Reflux. J. Hear. Lung Transplant. 2013, 32, S28. [Google Scholar] [CrossRef]
- Ulluwishewa, D.; Wang, L.; Pereira, C.; Flynn, S.; Cain, E.; Stick, S.; Reen, F.J.; Ramsay, J.; O’Gara, F. Dissecting the regulation of bile-induced biofilm formation in Staphylococcus aureus. Microbiology 2016, 162, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- Reen, F.J.; Mooij, M.J.; Holcombe, L.J.; McSweeney, C.M.; McGlacken, G.P.; Morrissey, J.P.; O’Gara, F. The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour. FEMS Microbiol. Ecol. 2011, 77, 413–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reen, F.J.; Shanahan, R.; Cano, R.; O’Gara, F.; McGlacken, G.P. A structure activity-relationship study of the bacterial signal molecule HHQ reveals swarming motility inhibition in Bacillus atrophaeus. Org. Biomol. Chem. 2015, 13, 5537–5541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reen, F.J.; Phelan, J.P.; Gallagher, L.; Woods, D.F.; Shanahan, R.M.; Cano, R.; Muimhneacháin, E.Ó.; McGlacken, G.P.; O’Gara, F. Exploiting Interkingdom Interactions for Development of Small-Molecule Inhibitors of Candida albicans Biofilm Formation. Antimicrob. Agents Chemother. 2016, 60, 5894–5905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reen, F.J.; Phelan, J.P.; Woods, D.F.; Shanahan, R.; Cano, R.; Clarke, S.; McGlacken, G.P.; O’Gara, F. Harnessing Bacterial Signals for Suppression of Biofilm Formation in the Nosocomial Fungal Pathogen Aspergillus fumigatus. Front. Microbiol. 2016, 7, 2074. [Google Scholar] [CrossRef] [Green Version]
- Legendre, C.; Reen, F.J.; Woods, D.F.; Mooij, M.J.; Adams, C.; O’Gara, F. Bile Acids Repress Hypoxia-Inducible Factor 1 Signaling and Modulate the Airway Immune Response. Infect. Immun. 2014, 82, 3531–3541. [Google Scholar] [CrossRef] [Green Version]
- Phelan, J.P.; Reen, F.J.; Dunphy, N.; O’Connor, R.; O’Gara, F. Bile acids destabilise HIF-1α and promote anti-tumour phenotypes in cancer cell models. BMC Cancer 2016, 16, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ovidio, F.; Mura, M.; Ridsdale, R.; Takahashi, H.; Waddell, T.K.; Hutcheon, M.; Hadjiliadis, D.; Singer, L.G.; Pierre, A.; Chaparro, C.; et al. The Effect of Reflux and Bile Acid Aspiration on the Lung Allograft and Its Surfactant and Innate Immunity Molecules SP-A and SP-D. Arab. Archaeol. Epigr. 2006, 6, 1930–1938. [Google Scholar] [CrossRef] [PubMed]
- Urso, A.; Perez-Zoghbi, J.; Nandakumar, R.; Cremers, S.; Bunnett, N.; Emala, C.; D’Ovidio, F. Aspirated bile acids affect lung immunity and function. Transplantation 2019, 54, 3359. [Google Scholar] [CrossRef]
- Chen, B.; You, W.J.; Liu, X.Q.; Xue, S.; Qin, H.; Jiang, H.D. Chronic microaspiration of bile acids induces lung fibrosis through multiple mechanisms in rats. Clin. Sci. 2017, 131, 951–963. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Levy, L.; Hunter, S.; Zhang, K.; Huszti, E.; Boonstra, K.; Sage, A.; Azad, S.; Zamel, R.; Ghany, R.; et al. Lung Bile Acid as Biomarker of Microaspiration and Its Relationship to Lung Inflammation. J. Hear. Lung Transplant. 2019, 38, S255–S256. [Google Scholar] [CrossRef]
- D’Ovidio, F.; Mura, M.; Tsang, M.; Waddell, T.K.; Hutcheon, M.A.; Singer, L.G.; Hadjiliadis, D.; Chaparro, C.; Gutierrez, C.; Pierre, A.; et al. Bile acid aspiration and the development of bronchiolitis obliterans after lung transplantation. J. Thorac. Cardiovasc. Surg. 2005, 129, 1144–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appel, J.Z.; Lee, S.M.; Hartwig, M.G.; Li, B.; Hsieh, C.-C.; Cantu, E.; Yoon, Y.; Lin, S.S.; Parker, W.; Davis, R.D. Characterization of the innate immune response to chronic aspiration in a novel rodent model. Respir. Res. 2007, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Caparrós-Martín, J.A.; Lareu, R.R.; Ramsay, J.P.; Peplies, J.; Reen, F.J.; Headlam, H.A.; Ward, N.C.; Croft, K.D.; Newsholme, P.; Hughes, J.D.; et al. Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome 2017, 5, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Liu, H.; Zhang, M.; Guo, G.L. Fatty liver diseases, bile acids, and FXR. Acta Pharm. Sin. B 2016, 6, 409–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, A.; Stick, S. Early pulmonary inflammation and lung damage in children with cystic fibrosis. Respirology 2015, 20, 569–578. [Google Scholar] [CrossRef]
- Cai, S.-Y.; Ouyang, X.; Chen, Y.; Soroka, C.J.; Wang, J.; Mennone, A.; Wang, Y.; Mehal, W.Z.; Jain, D.; Boyer, J.L. Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight 2017, 2, e90780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zang, Y.; Gao, Y.; Han, L.; Lin, H.; Gao, Y.; Chen, M.; Liu, Y.; Zhang, Q.; Fu, E. Evaluation of bronchoalveolar lavage fluid combined with the loop-mediated isothermal amplification assay in lower respiratory tract infections. Am. J. Transl. Res. 2020, 12, 4009–4016. [Google Scholar]
- Stick, S.M.; Brennan, S.; Murray, C.; Douglas, T.; von Ungern-Sternberg, B.; Garratt, L.; Gangell, C.L.; De Klerk, N.; Linnane, B.; Ranganathan, S.; et al. Bronchiectasis in Infants and Preschool Children Diagnosed with Cystic Fibrosis after Newborn Screening. J. Pediatr. 2009, 155, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Sly, P.D.; Gangell, C.L.; Chen, L.; Ware, R.S.; Ranganathan, S.; Mott, L.S.; Murray, C.P.; Stick, S. Risk Factors for Bronchiectasis in Children with Cystic Fibrosis. New Engl. J. Med. 2013, 368, 1963–1970. [Google Scholar] [CrossRef] [Green Version]
- Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.; Ross, R.; Frydas, I.; Kritas, S. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents 2020, 34. [Google Scholar] [CrossRef]
- Conti, P.; Caraffa, A.; Tetè, G.; Gallenga, C.E.; Ross, R.; Kritas, S.K.; Frydas, I.; Younes, A.; Di Emidio, P.; Ronconi, G. Mast cells activated by SARS-CoV-2 release histamine which increases IL-1 levels causing cytokine storm and inflammatory reaction in COVID-19. J. Biol. Regul. Homeost. Agents 2020, 34, 1629–1632. [Google Scholar]
- Abbasifard, M.; Khorramdelazad, H. The bio-mission of interleukin-6 in the pathogenesis of COVID-19: A brief look at potential therapeutic tactics. Life Sci. 2020, 257, 118097. [Google Scholar] [CrossRef]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.A.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut–lung axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Calmus, Y.; Guechot, J.; Podevin, P.; Bonnefis, M.-T.; Giboudeau, J.; Poupon, R. Differential effects of chenodeoxycholic and ursodeoxycholic acids on interleukin 1, interleukin 6 and tumor necrosis factor–α production by monocytes. Hepatology 1992, 16, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Greve, J.W.; Gouma, D.J.; Buurman, W.A. Bile acids inhibit endotoxin-induced release of tumor necrosis factor by monocytes: Anin Vitro study. Hepatology 1989, 10, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-N.; Chen, J.-R.; Chen, J.-L. Role of Farnesoid X Receptor in the Pathogenesis of Respiratory Diseases. Can. Respir. J. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Cummins, E.; Keogh, C.E.; Crean, D.; Taylor, C.T. The role of HIF in immunity and inflammation. Mol. Asp. Med. 2016, 47-48, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.L.; Bruyninckx, W.J.; Kelly, C.J.; Glover, L.E.; McNamee, E.N.; Bowers, B.E.; Bayless, A.J.; Scully, M.; Saeedi, B.J.; Golden-Mason, L.; et al. Transmigrating Neutrophils Shape the Mucosal Microenvironment through Localized Oxygen Depletion to Influence Resolution of Inflammation. Immunity 2014, 40, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Imtiyaz, H.Z.; Simon, M.C. Hypoxia-Inducible Factors as Essential Regulators of Inflammation. Curr. Top. Microbiol. Immunol. 2010, 345, 105–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guina, T.; Purvine, S.; Yi, E.C.; Eng, J.; Goodlett, D.R.; Aebersold, R.; Miller, S.I. Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc. Natl. Acad. Sci. USA 2003, 100, 2771–2776. [Google Scholar] [CrossRef] [Green Version]
- Legendre, C.; Mooij, M.J.; Adams, C.; O’Gara, F. Impaired expression of hypoxia-inducible factor-1α in cystic fibrosis airway epithelial cells – A role for HIF-1 in the pathophysiology of CF? J. Cyst. Fibros. 2011, 10, 286–290. [Google Scholar] [CrossRef] [Green Version]
- Wainwright, C.E.; Elborn, J.S.; Ramsey, B.W.; Marigowda, G.; Huang, X.; Cipolli, M.; Colombo, C.; Davies, J.C.; De Boeck, K.; Flume, P.A.; et al. Lumacaftor–Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N. Engl. J. Med. 2015, 373, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Flume, P.A.; Liou, T.G.; Borowitz, D.S.; Li, H.; Yen, K.; Ordoñez, C.L.; Geller, D.E. Ivacaftor in Subjects With Cystic Fibrosis Who Are Homozygous for the F508del-CFTR Mutation. Chest 2012, 142, 718–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhooghe, B.; Haaf, J.B.; Noël, S.; Leal, T. Strategies in early clinical development for the treatment of basic defects of cystic fibrosis. Expert Opin. Investig. Drugs 2016, 25, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Alton, E.W.F.W.; Armstrong, D.K.; Ashby, D.; Bayfield, K.J.; Bilton, D.; Bloomfield, E.V.; Boyd, A.C.; Brand, J.; Buchan, R.; Calcedo, R.; et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: A randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 2015, 3, 684–691. [Google Scholar] [CrossRef] [Green Version]
- Carraro, G.; Langerman, J.; Sabri, S.; Lorenzana, Z.; Purkayastha, A.; Zhang, G.; Konda, B.; Aros, C.J.; Calvert, B.A.; Szymaniak, A.; et al. Transcriptional analysis of cystic fibrosis airways at single-cell resolution reveals altered epithelial cell states and composition. Nat. Med. 2021, 27, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Okuda, K.; Dang, H.; Kobayashi, Y.; Carraro, G.; Nakano, S.; Chen, G.; Kato, T.; Asakura, T.; Gilmore, R.C.; Morton, L.C.; et al. Secretory Cells Dominate Airway CFTR Expression and Function in Human Airway Superficial Epithelia. Am. J. Respir. Crit. Care Med. 2021, 203, 1275–1289. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.L.; Sorrentino, G.; Egerod, K.L.; Kroone, C.; Mortensen, B.; Knop, F.K.; Reimann, F.; Gribble, F.M.; Drucker, D.J.; De Koning, E.J.; et al. L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling. Diabetes 2020, 69, 614–623. [Google Scholar] [CrossRef]
- Sorrentino, G.; Perino, A.; Yildiz, E.; El Alam, G.; Sleiman, M.B.; Gioiello, A.; Pellicciari, R.; Schoonjans, K. Bile Acids Signal via TGR5 to Activate Intestinal Stem Cells and Epithelial Regeneration. Gastroenterol. 2020, 159, 956–968. [Google Scholar] [CrossRef]
- Clouzeau-Girard, H.; Guyot, C.; Combe, C.; Moronvalle-Halley, V.; Housset, C.; Lamireau, T.; Rosenbaum, J.; Desmoulière, A. Effects of bile acids on biliary epithelial cell proliferation and portal fibroblast activation using rat liver slices. Lab. Investig. 2006, 86, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Douglas, T.A.; Brennan, S.; Gard, S.; Berry, L.; Gangell, C.; Stick, S.; Clements, B.S.; Sly, P. Acquisition and eradication of P. aeruginosa in young children with cystic fibrosis. Eur. Respir. J. 2008, 33, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Gan, C.-J.; Ward, C.; Meachery, G.; Lordan, J.L.; Fisher, A.J.; A Corris, P. Long-term effect of azithromycin in bronchiolitis obliterans syndrome. BMJ Open Respir. Res. 2019, 6, e000465. [Google Scholar] [CrossRef]
- Venditto, V.J.; Haydar, D.; Abdel-Latif, A.; Gensel, J.C.; Anstead, M.I.; Pitts, M.G.; Creameans, J.; Kopper, T.J.; Peng, C.; Feola, D.J. Immunomodulatory Effects of Azithromycin Revisited: Potential Applications to COVID-19. Front. Immunol. 2021, 12, 574425. [Google Scholar] [CrossRef]
- Mertens, V.; Blondeau, K.; Pauwels, A.; Farre, R.; Vanaudenaerde, B.; Vos, R.; Verleden, G.; Van Raemdonck, D.E.; Dupont, L.J.; Sifrim, D. Azithromycin Reduces Gastroesophageal Reflux and Aspiration in Lung Transplant Recipients. Dig. Dis. Sci. 2009, 54, 972–979. [Google Scholar] [CrossRef]
- Cogen, J.D.; Onchiri, F.; Emerson, J.; Gibson, R.L.; Hoffman, L.R.; Nichols, D.P.; Rosenfeld, M. Chronic Azithromycin Use in Cystic Fibrosis and Risk of Treatment-Emergent Respiratory Pathogens. Ann. Am. Thorac. Soc. 2018, 15, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Enaud, R.; Prevel, R.; Ciarlo, E.; Beaufils, F.; Wieërs, G.; Guery, B.; Delhaes, L. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front. Cell. Infect. Microbiol. 2020, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skalski, J.H.; Limon, J.J.; Sharma, P.; Gargus, M.D.; Nguyen, C.; Tang, J.; Coelho, A.L.; Hogaboam, C.M.; Crother, T.; Underhill, D.M. Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathog. 2018, 14, e1007260. [Google Scholar] [CrossRef] [PubMed]
- Mertens, V.; Blondeau, K.; Van Oudenhove, L.; Vanaudenaerde, B.; Vos, R.; Farre, R.; Pauwels, A.; Verleden, G.; Van Raemdonck, D.; Sifrim, D.; et al. Bile Acids Aspiration Reduces Survival in Lung Transplant Recipients with BOS Despite Azithromycin. Arab. Archaeol. Epigr. 2011, 11, 329–335. [Google Scholar] [CrossRef] [PubMed]
Respiratory Condition | Clinical Presentation | Reference |
---|---|---|
Cystic Fibrosis | Reflux | [128,130,133,151,152,153,154,155,156,157] |
Reflux/aspiration | [108,109,111,119,126,158,159] | |
COPD | Reflux | [160,161,162,163,164,165,166,167,168,169,170,171] |
Reflux/aspiration | [172,173] | |
Asthma | Reflux | [174,175,176,177,178,179,180,181,182,183] |
Reflux/aspiration | [184] | |
Chronic cough | Reflux | [185,186,187,188,189,190,191,192] |
Reflux/aspiration | [193,194,195] | |
Idiopathic pulmonary fibrosis | Reflux | [196,197,198,199,200,201] |
Reflux/aspiration | [202,203] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woods, D.F.; Flynn, S.; Caparrós-Martín, J.A.; Stick, S.M.; Reen, F.J.; O’Gara, F. Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung. Antibiotics 2021, 10, 766. https://doi.org/10.3390/antibiotics10070766
Woods DF, Flynn S, Caparrós-Martín JA, Stick SM, Reen FJ, O’Gara F. Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung. Antibiotics. 2021; 10(7):766. https://doi.org/10.3390/antibiotics10070766
Chicago/Turabian StyleWoods, David F., Stephanie Flynn, Jose A. Caparrós-Martín, Stephen M. Stick, F. Jerry Reen, and Fergal O’Gara. 2021. "Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung" Antibiotics 10, no. 7: 766. https://doi.org/10.3390/antibiotics10070766
APA StyleWoods, D. F., Flynn, S., Caparrós-Martín, J. A., Stick, S. M., Reen, F. J., & O’Gara, F. (2021). Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung. Antibiotics, 10(7), 766. https://doi.org/10.3390/antibiotics10070766