CLICK-FLISA Based on Metal–Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of MOFs
2.2. Preparation of CLICK-MOF Assemblies
2.3. Preparation of TCO-Ab2
2.4. Detection Process of CLICK-FLISA
2.5. Selectivity for ZEN and FB1
2.6. Actual Sample Detection
3. Results and Discussion
3.1. Mechanisms Associated with CLICK-FLISA
3.2. Feasibility Verification and Characterization of the CLICK-FLISA System
3.3. Optimization of the Analytical Performance of the CLICK-FLISA System
3.4. Evaluation of the Analytical Performance of the CLICK-FLISA System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bogomolov, A.B.; Kulakov, S.A.; Zinin, P.V.; Kutwitskii, V.A.; Bulatov, M.F. Synthesis of Fluorescent Composite Materials Based on Graphitic Carbon Nitride. Opt. Spectrosc. 2020, 128, 920–923. [Google Scholar] [CrossRef]
- Luo, S.; Liu, Y.; Rao, H.; Wang, Y.; Wang, X. Fluorescence and magnetic nanocomposite Fe3 O4@SiO2@Au MNPs as peroxidase mimetics for glucose detection. Anal. Biochem. 2017, 538, 26–33. [Google Scholar] [CrossRef]
- Regeenes, R.; Silva, P.; Kilkenny, D.M.; Rocheleau, J.V. Quantitative Fluorescence Microscopy Reveals Higher Order Oligomerization of FGFR5. Biophys. J. 2017, 112, 88A. [Google Scholar] [CrossRef]
- Mayilo, S.; Ehlers, B.; Wunderlich, M.; Klar, T.A.; Josel, H.-P.; Heindl, D.; Nichtl, A.; Kürzinger, K.; Feldmann, J. Competitive homogeneous digoxigenin immunoassay based on fluorescence quenching by gold nanoparticles. Anal. Chim. Acta 2009, 646, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Guirgis, B.S.S.; Sá e Cunha, C.; Gomes, I.; Cavadas, M.; Silva, I.; Doria, G.; Blatch, G.L.; Baptista, P.V.; Pereira, E.; Azzazy, H.M.E.; et al. Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Anal. Bioanal. Chem. 2011, 402, 1019–1027. [Google Scholar] [CrossRef]
- Blout, E.R.; Eager, V.W. Absorption Spectra II Some Aldehyde Condensation Products of Methyl Pyridines. J. Am. Chem. Soc. 2002, 67, 1315–1319. [Google Scholar] [CrossRef]
- Stryer, L. Excited-State Proton-Transfer Reactions. J. Am. Chem. Soc. 1966, 88, 5708–5712. [Google Scholar] [CrossRef]
- Velick, S.F.; Parker, C.W.; Eisen, H.N. Excitation energy transfer and the quantitative study of the antibody hapten reaction. Proc. Natl. Acad. Sci. USA 1960, 46, 1470–1482. [Google Scholar] [CrossRef]
- Sloan, D.L.; Velick, S.F. Protein Hydration Changes in the Formation of the Nicotinamide Adenine Dinucleotide Complexes of Glyceraldehyde 3-Phosphate Dehydrogenase of Yeast. J. Biol. Chem. 1973, 248, 5419–5423. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, Y.; Choe, B.K.; Kim, S.A.; Lee, H.J.; Kim, J.W.; Huh, Y.; Kim, C.; Chung, J.H. Differential expression of nicotinamide adenine dinucleotide phosphate-diaphorase in hypothalamic areas of obese Zucker rats. Neurosci. Lett. 2000, 292, 60–62. [Google Scholar] [CrossRef]
- Beaudet, L.; Rodriguez-Suarez, R.; Venne, M.H. AlphaLISA immunoassays: The no-wash alternative to ELISAs for research and drug discovery. Nat. Methods 2008, 5, an8–an9. [Google Scholar] [CrossRef]
- Chen, R.; Huang, X.; Xu, H.; Xiong, Y.; Li, Y. Plasmonic Enzyme-Linked Immunosorbent Assay Using Nanospherical Brushes as a Catalase Container for Colorimetric Detection of Ultralow Concentrations of Listeria monocytogenes. ACS Appl. Mater. 2015, 7, 28632–28639. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Zhou, Y.; Huang, X.; Yu, R.; Lai, W.; Xiong, Y. Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies. Anal. Chim. Acta 2017, 972, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Jacquemin, D.; Perpète, E.A.; Scalmani, G.; Frisch, M.J.; Ciofini, I.; Adamo, C. Absorption and emission spectra in gas-phase and solution using TD-DFT: Formaldehyde and benzene as case studies. Chem. Phys. Lett. 2006, 421, 272–276. [Google Scholar] [CrossRef]
- Gao, N.; Chang, J.; Zhu, Z.; You, H. Multistory Stairs-based, Fast and Point-of-care Testing for Disease Biomarker Using One-step Capillary Microfluidic Fluoroimmunoassay Chip via Continuous On-chip Labelling. BioChip J. 2021, 15, 268–275. [Google Scholar] [CrossRef]
- Wong, D.; Phani, A.; Homayoonnia, S.; Park, S.S.; Kim, S.; Abuzalat, O. Manipulating Active Sites of 2D Metal–Organic Framework Nanosheets with Fluorescent Materials for Enhanced Colorimetric and Fluorescent Ammonia Sensing. Adv. Mater. 2022, 9, 2102086. [Google Scholar] [CrossRef]
- Zhao, B.; Ma, H.; Zheng, M.; Xu, K.; Zou, C.; Qu, S.; Tan, Z.A. Narrow-bandwidth emissive carbon dots: A rising star in the fluorescent material family. Carbon Energy 2022, 4, 88–114. [Google Scholar] [CrossRef]
- Co, C.M.; Izuagbe, S.; Zhou, J.; Zhou, N.; Sun, X.; Borrelli, J.; Tang, L. Click chemistry-based pre-targeting cell delivery for cartilage regeneration. Regen Biomater. 2021, 8, rbab018. [Google Scholar] [CrossRef]
- Zhao, Q.; Lu, D.; Zhang, G.; Zhang, D.; Shi, X. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 2021, 223, 121722. [Google Scholar] [CrossRef]
- Li, J.-X.; Li, Y.-H.; Qin, Z.-B.; Dong, G.-Y. Ultrasound assisted synthesis of a zinc(II) coordination polymer with nano-flower morphology and the use as precursor for zinc(II) oxide nanoparticles. Polyhedron 2018, 155, 94–101. [Google Scholar] [CrossRef]
- Abazari, R.; Mahjoub, A.R.; Ataei, F.; Morsali, A.; Carpenter-Warren, C.L.; Mehdizadeh, K.; Slawin, A.M.Z. Chitosan Immobilization on Bio-MOF Nanostructures: A Biocompatible pH-Responsive Nanocarrier for Doxorubicin Release on MCF-7 Cell Lines of Human Breast Cancer. Inorg. Chem. 2018, 57, 13364–13379. [Google Scholar] [CrossRef] [PubMed]
- Aghajanzadeh, M.; Zamani, M.; Molavi, H.; Khieri Manjili, H.; Danafar, H.; Shojaei, A. Preparation of Metal–Organic Frameworks UiO-66 for Adsorptive Removal of Methotrexate from Aqueous Solution. J. Inorg. Organomet. Polym Mater. 2017, 28, 177–186. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, D.; Lu, Y.; Sun, W.-Y. Photoluminescent metal–organic frameworks and their application for sensing biomolecules. J. Mater. 2019, 7, 22744–22767. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Zhang, F.; Yu, L.; Bai, B.; Zhang, J.; Zhang, B.; Tian, Y.; Qin, S.; Yang, Y. Two birds with one stone: A universal design and application of signal-on labeled fluorescent/electrochemical dual-signal mode biosensor for the detection of tetracycline residues in tap water, milk and chicken. Food Chem. 2024, 430, 136904. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Liu, H.; Zhang, C.; Yang, X.; Blecker, C. LMOF serve as food preservative nanosensor for sensitive detection of nitrite in meat products. Lwt 2022, 169, 114030. [Google Scholar] [CrossRef]
- Samanta, P.; Desai, A.V.; Sharma, S.; Chandra, P.; Ghosh, S.K. Selective Recognition of Hg2+ ion in Water by a Functionalized Metal–Organic Framework (MOF) Based Chemodosimeter. Inorg. Chem. 2018, 57, 2360–2364. [Google Scholar] [CrossRef]
- He, K.; Li, Z.; Wang, L.; Fu, Y.; Quan, H.; Li, Y.; Wang, X.; Gunasekaran, S.; Xu, X. A Water-Stable Luminescent Metal–Organic Framework for Rapid and Visible Sensing of Organophosphorus Pesticides. ACS Appl. Mater. 2019, 11, 26250–26260. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, N.; Lou, Y.; Ren, S.; Pang, S.; He, Y.; Chen, X.-B.; Shi, Z.; Feng, S. A stable nanoscaled Zr-MOF for the detection of toxic mycotoxin through a pH-modulated ratiometric luminescent switch. Chem. Commun. 2020, 56, 5389–5392. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Ren, X.; Zhang, W.; Zhang, T.; Liu, X.; Du, T.; Li, T.; Wang, J. Internally extended growth of core–shell NH2-MIL-101(Al)@ZIF-8 nanoflowers for the simultaneous detection and removal of Cu(ii). J. Mater. 2018, 6, 21029–21038. [Google Scholar] [CrossRef]
- Tian, D.; Liu, X.-J.; Feng, R.; Xu, J.-L.; Xu, J.; Chen, R.-Y.; Huang, L.; Bu, X.-H. Microporous Luminescent Metal–Organic Framework for a Sensitive and Selective Fluorescence Sensing of Toxic Mycotoxin in Moldy Sugarcane. AACS Appl. Mater. 2018, 10, 5618–5625. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Mohammadkhani, R.; Ahmadipouya, S.; Shokrgozar, A.; Rezakazemi, M.; Molavi, H.; Aminabhavi, T.M.; Arjmand, M. Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption. Chem. Eng. J. 2020, 399, 125346. [Google Scholar] [CrossRef]
- Awfa, D.; Ateia, M.; Fujii, M.; Johnson, M.S.; Yoshimura, C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature. Water Res. 2018, 142, 26–45. [Google Scholar] [CrossRef]
- Blasco, C.; Corcia, A.D.; Picó, Y. Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. Food Chem. 2009, 116, 1005–1012. [Google Scholar] [CrossRef]
- Sanogo, S.; Silimbani, P.; Gaggeri, R.; Masini, C. Development and validation of an HPLC-DAD method for the simultaneous identification and quantification of Topotecan, Irinotecan, Etoposide, Doxorubicin and Epirubicin. Arab. J. Chem. 2021, 14, 102896. [Google Scholar] [CrossRef]
- Neumann, M.M.; Volodkin, D. Porous antibody-containing protein microparticles as novel carriers for ELISA. Analyst 2020, 145, 1202–1206. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shen, D.; Zhu, Z.; Li, M.; Yuan, C.; Zhu, Y.; Wu, J.; Mao, C. Quantifying contrast of latent fingerprints developed by fluorescent nanomaterials based on spectral analysis. Talanta 2021, 231, 122138. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xia, K.; Wang, L.; Wu, M.; Sang, X.; Wan, K.; Zhang, X.; Liu, X.; Wei, G. Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. Small 2021, 17, 2005578. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Qi, H.; Teng, Y.; Pierre, D.; Kutoka, P.T.; Liu, D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. Nanoscale Res. Lett. 2021, 16, 1–23. [Google Scholar] [CrossRef]
- Blanch, G.P.; Gómez-Jiménez, M.C.; del Castillo, M.L.R. Exogenous Salicylic Acid Improves Phenolic Content and Antioxidant Activity in Table Grapes. Plant Foods Hum. Nutr. 2020, 75, 177–183. [Google Scholar] [CrossRef]
- Buzalaf, M.A.R. Review of Fluoride Intake and Appropriateness of Current Guidelines. Adv. Dent. Res. 2018, 29, 157–166. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, T.; Fu, H.; Qu, X.; Xu, Z.; Zheng, S. Ultrasensitive, rapid and selective sensing of hazardous fluoride ion in aqueous solution using a zirconium porphyrinic luminescent metal-organic framework. Anal. Chim. Acta 2021, 1145, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, Y.; Yang, S.; Tian, H.; Sun, B. Discriminative detection of mercury (II) and hydrazine using a dual-function fluorescent probe. Luminescence 2020, 35, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhou, Y.; Wang, X.-L.; Liang, L.-P.; Long, Y.-J.; Wang, Q.-L.; Zhang, H.-J.; Huang, X.-X.; Zheng, H.-Z. Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters. Talanta 2013, 117, 127–132. [Google Scholar] [CrossRef]
- Rudd, N.D.; Wang, H.; Fuentes-Fernandez, E.M.A.; Teat, S.J.; Chen, F.; Hall, G.; Chabal, Y.J.; Li, J. Highly Efficient Luminescent Metal–Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. ACS Appl. Mater. Interfaces 2016, 8, 30294–30303. [Google Scholar] [CrossRef] [PubMed]
Sample | Target | Fortified Concentration | Detection Value | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
1 | ZEN | 0.05 | 0.043 | 86.0 | 8.4 |
2 | ZEN | 0.1 | 0.105 | 105.1 | 8.2 |
3 | ZEN | 0.5 | 0.578 | 115.6 | 5.8 |
4 | ZEN | 1 | 1.168 | 116.8 | 9.2 |
5 | ZEN | 2 | 2.226 | 111.3 | 4.9 |
6 | FB1 | 1 | 1.150 | 115.0 | 6.1 |
7 | FB1 | 5 | 4.855 | 97.1 | 6.7 |
8 | FB1 | 10 | 10.914 | 109.1 | 5.8 |
9 | FB1 | 50 | 53.352 | 106.7 | 3.4 |
10 | FB1 | 100 | 104.340 | 104.3 | 2.3 |
Method | Target | Detection Range (ng·mL−1) | LOD (ng·mL−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
ELISA | ZEN | 3.9~2000 | 3.228 | - | - |
FB1 | 40~4000 | 22.787 | - | - | |
FLISA | ZEN | 0.2~250 | 0.124 | 92~107.9 | 2.7~5.6 |
FB1 | 12~2500 | 2.103 | 91.2~107.9 | 2.7~7.3 | |
LFIA | ZEN | 0.8~40 | 0.70 | 88.28~104.68 | - |
FB1 | 4~80 | 3.27 | 88.36~112.49 | - | |
CLICK-FLISA | ZEN | 0.02~5 | 0.016 | 88~117.1 | 4.8~9.2 |
FB1 | 0.4~250 | 0.394 | 96.8~115.6 | 2.1~6.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhu, B.; Zhang, X.; Peng, Y.; Li, S.; Han, D.; Ren, S.; Qin, K.; Wang, Y.; Zhou, H.; et al. CLICK-FLISA Based on Metal–Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize. Biosensors 2024, 14, 355. https://doi.org/10.3390/bios14070355
Zhang J, Zhu B, Zhang X, Peng Y, Li S, Han D, Ren S, Qin K, Wang Y, Zhou H, et al. CLICK-FLISA Based on Metal–Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize. Biosensors. 2024; 14(7):355. https://doi.org/10.3390/bios14070355
Chicago/Turabian StyleZhang, Jingyang, Banglei Zhu, Xiaoyu Zhang, Yuan Peng, Shuang Li, Dianpeng Han, Shuyue Ren, Kang Qin, Yu Wang, Huanying Zhou, and et al. 2024. "CLICK-FLISA Based on Metal–Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize" Biosensors 14, no. 7: 355. https://doi.org/10.3390/bios14070355
APA StyleZhang, J., Zhu, B., Zhang, X., Peng, Y., Li, S., Han, D., Ren, S., Qin, K., Wang, Y., Zhou, H., & Gao, Z. (2024). CLICK-FLISA Based on Metal–Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize. Biosensors, 14(7), 355. https://doi.org/10.3390/bios14070355