Impedimetric Biosensors for the Quantification of Serum Biomarkers for Early Detection of Lung Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. EIS Measurements
2.3. Functionalization of Magnetic Beads (MB) with Antibodies
2.4. Biosensors Preparation
2.5. CEA/NSE Immunosensors Development
3. Results
3.1. Immunosensor Optimization
3.2. CEA and NSE Quantification in Buffer
3.3. CEA and NSE Quantification in Serum
3.4. Cross-Reactivity Evaluation
4. Discussion
Type of Sensor | Linear Range | Limit of Detection (LoD) | Reference |
---|---|---|---|
Differential pulse voltammetry | 0.001–100 pg/mL | 0.001 pg/mL | [66] |
0.1–750 ng/mL | ~90 pg/mL | [67] | |
0.01–100 ng/mL | 0.003 pg/mL | [68] | |
Amperometric | 0.001–50 ng/mL | 0.3 pg/mL | [69] |
0.1–2 ng/mL | 60 pg/mL | [70] | |
Anodic stripping voltammetry | 0.05–1000 pg/mL | 0.024 pg/mL | [71] |
Cyclic voltammetry | 5–60 ng/mL | 5 ng/mL | [65] |
Electronic | 0.25 pg/mL–800 µg/mL | 0.25 pg/mL | [23] |
Surface plasmon resonance | 0.4–25 ng/mL | 100 pg/mL | [24] |
Electrochemiluminescence | 5–300 ng/mL | 2.51 ng/mL | [26] |
Impedimetric | 0.001–80 ng/mL | 0.64 pg/mL | [54] |
0.05 pg/mL–20 ng/mL | 0.023 pg/mL | [72] | |
1.5–60 ng/mL | 500 pg/mL | [64] | |
0.5–20 ng/mL | 100 pg/mL | [73] | |
1–500 pg/mL 1–40 ng/ml | 0.03 pg/mL | [74] | |
0.001–100 ng/mL | 0.1 pg/mL | [63] | |
0.1–1000 ng/mL | 60 pg/mL | [75] | |
This work | 1–100 ng/mL (serum) | 0.76 ng/mL (serum) | - |
Type of Sensor | Linear Range | Limit of Detection (LoD) | Reference |
---|---|---|---|
Voltametric (differential pulse voltammetry, square wave voltammetry) | 0–25 ng/mL | 4.6 ng/mL | [46] |
1–150 ng/mL | 0.9 ng/mL | [76] | |
0.001–200 ng/mL | 0.26 pg/mL | [77] | |
0.001–100 ng/mL | 0.0003 ng/mL | [48] | |
0.01–100 ng/mL | 0.003 ng/mL | [47] | |
Quantum dots based immunosensors | 0.5–50 ng/mL | 0.2 ng/mL | [44] |
0.001–100 ng/mL | 0.02 pg/mL | [41] | |
0.1 pg/mL–1000 ng/mL | 0.09 pg/mL | [45] | |
Amperometric | 0.01–100 ng/mL | 0.0078 ng/mL | [38] |
Field effect transistor | 1–1000 ng/mL | 100 ng/mL | [78] |
Electrochemiluminescence | 0.01 pg/mL–10 ng/mL | 0.01 pg/mL | [79] |
Plasmonic | 0.17–1.7 µg/mL | 21 ng/mL | [51] |
Optical | 5–125 ng/mL | 12 ng/mL | [80] |
1–1000 ng/mL | N/A | [49] | |
1–1000 ng/mL | 0.05 ng/mL | [50] | |
Impedimetric | 1–50 pg/mL | 0.5 pg/mL | [42] |
This work | 1–100 ng/mL (serum) | 0.52 ng/mL (serum) | - |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, A.; Naresh Babu, M.; Bujjamma, D. Bioinformatics of Non Small Cell Lung Cancer and the Ras Proto-Oncogene; SpringerBriefs in Applied Sciences and Technology; Springer: Singapore, 2015. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, J.; Zhang, A.; Wang, Y.; Cai, X. Electrochemical Detecting Lung Cancer-Associated Antigen Based on Graphene-Gold Nanocomposite. Molecules 2017, 22, 392. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Wang, W.; Yao, S.; Wu, S.; Zhang, H.; Zhang, J.; Jing, F.; Mao, H.; Jin, Q.; Cong, H.; et al. Highly Sensitive Detection of Multiple Tumor Markers for Lung Cancer Using Gold Nanoparticle Probes and Microarrays. Anal. Chim. Acta 2017, 958, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Chinnappan, R.; Mir, T.A.; Alsalameh, S.; Makhzoum, T.; Alzhrani, A.; Alnajjar, K.; Adeeb, S.; Al Eman, N.; Ahmed, Z.; Shakir, I.; et al. Emerging Biosensing Methods to Monitor Lung Cancer Biomarkers in Biological Samples: A Comprehensive Review. Cancers 2023, 15, 3414. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, J.; Wang, Y.; Luo, J.; Xu, H.; Xu, S.; Cai, X. A Wireless Point-of-Care Testing System for the Detection of Neuron-Specific Enolase with Microfluidic Paper-Based Analytical Devices. Biosens. Bioelectron. 2017, 95, 60–66. [Google Scholar] [CrossRef]
- Nichols, J.H. Utilizing Point-of-Care Testing to Optimize Patient Care. Electron. J. Int. Fed. Clin. Chem. Lab. Med. 2021, 32, 140. [Google Scholar]
- Tothill, I.E. Biosensors for Cancer Markers Diagnosis. Semin. Cell Dev. Biol. 2009, 20, 55–62. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef]
- Indovina, P.; Marcelli, E.; Pentimalli, F.; Tanganelli, P.; Tarro, G.; Giordano, A. Mass Spectrometry-Based Proteomics: The Road to Lung Cancer Biomarker Discovery. Mass. Spectrom. Rev. 2013, 32, 129–142. [Google Scholar] [CrossRef]
- Altintas, Z.; Tothill, I. Biomarkers and Biosensors for the Early Diagnosis of Lung Cancer. Sens. Actuators B Chem. 2013, 188, 988–998. [Google Scholar] [CrossRef]
- Hensing, T.A.; Salgia, R. Molecular Biomarkers for Future Screening of Lung Cancer. J. Surg. Oncol. 2013, 108, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Cao, X.; Yu, M. Electrochemical Immunoassay Based on Gold Nanoparticles and Reduced Graphene Oxide Functionalized Carbon Ionic Liquid Electrode. Microchem. J. 2012, 103, 125–130. [Google Scholar] [CrossRef]
- Arrieta, O.; Saavedra-Perez, D.; Kuri, R.; Aviles-Salas, A.; Martinez, L.; Mendoza-Posada, D.; Castillo, P.; Astorga, A.; Guzman, E.; De la Garza, J. Brain Metastasis Development and Poor Survival Associated with Carcinoembryonic Antigen (CEA) Level in Advanced Non-Small Cell Lung Cancer: A Prospective Analysis. BMC Cancer 2009, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.K.; Bhansali, S. Lung Cancer and Its Early Detection Using Biomarker-Based Biosensors. Chem. Rev. 2011, 111, 6783–6809. [Google Scholar] [CrossRef]
- Grunnet, M.; Sorensen, J.B. Carcinoembryonic Antigen (CEA) as Tumor Marker in Lung Cancer. Lung Cancer 2012, 76, 138–143. [Google Scholar] [CrossRef]
- Feng, T.; Qiao, X.; Wang, H.; Sun, Z.; Hong, C. A Sandwich-Type Electrochemical Immunosensor for Carcinoembryonic Antigen Based on Signal Amplification Strategy of Optimized Ferrocene Functionalized Fe3O4@SiO2 as Labels. Biosens. Bioelectron. 2016, 79, 48–54. [Google Scholar] [CrossRef]
- Gu, X.; She, Z.; Ma, T.; Tian, S.; Kraatz, H.B. Electrochemical Detection of Carcinoembryonic Antigen. Biosens. Bioelectron. 2018, 102, 610–616. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Critical Overview on the Application of Sensors and Biosensors for Clinical Analysis. TrAC-Trends Anal. Chem. 2016, 85, 36–60. [Google Scholar] [CrossRef]
- Fragoso, A.; Laboria, N.; Botero, M.L.; Bejarano, D.; Latta, D.; Hansen-Hagge, T.E.; Kemmner, W.; Katakis, I.; Gärtner, C.; Drese, K.; et al. Development of an Integrated Microsystem for the Multiplexed Detection of Breast Cancer Markers in Serum Using Electrochemical Immunosensors. In Microfluidics, BioMEMS, and Medical Microsystems VIII, Proceedings of the SPIE MOEMS-MEMS, San Francisco, CA, USA, 23–28 January 2010; SPIE: Bellingham, WA, USA, 2010; Volume 7593, p. 7593. [Google Scholar]
- Zhu, Y.; Chandra, P.; Shim, Y.-B. Ultrasensitive and Selective Electrochemical Diagnosis of Breast Cancer Based on a Hydrazine–Au Nanoparticle–Aptamer Bioconjugate. Anal. Chem. 2013, 85, 1058–1064. [Google Scholar] [CrossRef]
- Yeh, C.H.; Su, K.F.; Lin, Y.C.; Shen, P.L. Using the Biosensor Based on Impedance Measurement and Sandwich Immunoassay for Carcinoembryonic Antigen Detection. In Proceedings of the SENSORS, 2013 IEEE, Baltimore, MD, USA, 3–6 November 2013. [Google Scholar]
- Joshi, S.; Raj, K.A.; Rao, M.R.; Ghosh, R. An Electronic Biosensor Based on Semiconducting Tetrazine Polymer Immobilizing Matrix Coated on RGO for Carcinoembryonic Antigen. Sci. Rep. 2022, 12, 3006. [Google Scholar] [CrossRef]
- Špringer, T.; Homola, J. Biofunctionalized Gold Nanoparticles for SPR-Biosensor-Based Detection of CEA in Blood Plasma. Anal. Bioanal. Chem. 2012, 404, 2869–2875. [Google Scholar] [CrossRef] [PubMed]
- Suan Ng, S.; Ling Lee, H.; Bothi Raja, P.; Doong, R. an Recent Advances in Nanomaterial-Based Optical Biosensors as Potential Point-of-Care Testing (PoCT) Probes in Carcinoembryonic Antigen Detection. Chem. Asian J. 2022, 17, e202200287. [Google Scholar] [CrossRef] [PubMed]
- Mohammadniaei, M.; Zhang, M.; Qin, X.; Wang, W.; Pia, L.; Gürbüz, H.; Helalat, S.H.; Naseri, M.; Sun, Y. A Hand-Held Electrochemiluminescence Biosensor for Detection of Carcinoembryonic Antigen. Talanta 2024, 266, 125087. [Google Scholar] [CrossRef]
- Lei, J.; Lei, C.; Wang, T.; Yang, Z.; Zhou, Y. Detection of Targeted Carcinoembryonic Antigens Using a Micro-Fluxgate-Based Biosensor. Appl. Phys. Lett. 2013, 103, 203705. [Google Scholar] [CrossRef]
- Ibrahim, M.R.; Greish, Y.E. MOF-Based Biosensors for the Detection of Carcinoembryonic Antigen: A Concise Review. Molecules 2023, 28, 5970. [Google Scholar] [CrossRef]
- Hariri, M.; Alivirdiloo, V.; Ardabili, N.S.; Gholami, S.; Masoumi, S.; Mehraban, M.R.; Alem, M.; Hosseini, R.S.; Mobed, A.; Ghazi, F.; et al. Biosensor-Based Nanodiagnosis of Carcinoembryonic Antigen (CEA): An Approach to Classification and Precise Detection of Cancer Biomarker. Bionanoscience 2024, 14, 429–446. [Google Scholar] [CrossRef]
- Xiang, W.; Lv, Q.; Shi, H.; Xie, B.; Gao, L. Aptamer-Based Biosensor for Detecting Carcinoembryonic Antigen. Talanta 2020, 214, 120716. [Google Scholar] [CrossRef]
- Holmes, J.L.; Davis, F.; Collyer, S.D.; Higson, S.P.J. A New Application of Scanning Electrochemical Microscopy for the Label-Free Interrogation of Antibody–Antigen Interactions. Anal. Chim. Acta 2011, 689, 206–211. [Google Scholar] [CrossRef]
- Harmsma, M.; Schutte, B.; Ramaekers, F.C.S. Serum Markers in Small Cell Lung Cancer: Opportunities for Improvement. Biochim. Biophys. Acta Rev. Cancer 2013, 1836, 255–272. [Google Scholar] [CrossRef]
- Yang, H.; Mi, R.; Wang, Q.; Wei, X.; Yin, Q.; Chen, L.; Zhu, X.; Song, Y. Expression of Neuron-Specific Enolase in Multiple Myeloma and Implications for Clinical Diagnosis and Treatment. PLoS ONE 2014, 9, e94304. [Google Scholar] [CrossRef]
- Yang, T.; Vdovenko, M.; Jin, X.; Sakharov, I.Y.; Zhao, S. Highly Sensitive Microfluidic Competitive Enzyme Immunoassay Based on Chemiluminescence Resonance Energy Transfer for the Detection of Neuron-Specific Enolase. Electrophoresis 2014, 35, 2022–2028. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Shen, K.; Zhang, J.; Wan, W.; Cao, W.; Wang, Z.; Guo, C. Aptamer Based Surface Plasma Resonance Assay for Direct Detection of Neuron Specific Enolase and Progastrin-Releasing Peptide (31-98). RSC Adv. 2021, 11, 32135–32142. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Han, Y.; Tong, A.; Liu, J.; Wang, X.; Liu, C. Prognostic Value of Neuron-Specific Enolase in Patients with Advanced and Metastatic Non-Neuroendocrine Non-Small Cell Lung Cancer. Biosci. Rep. 2021, 41, BSR20210866. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Liang, C.; Zhang, Z.; Wen, H.; Feng, H.; Ma, Q.; Liu, D.; Qiang, G. Prognostic Value of Neuron-Specific Enolase for Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. World J. Surg. Oncol. 2020, 18, 116. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ma, Z. Amperometric Immunoassay for the Tumor Marker Neuron-Specific Enolase Using a Glassy Carbon Electrode Modified with a Nanocomposite Consisting of Polyresorcinol and of Gold and Platinum Nanoparticles. Microchim. Acta 2017, 184, 3247–3253. [Google Scholar] [CrossRef]
- Holmes, J.L.; Davis, F.; Collyer, S.D.; Higson, S.P.J. A New Application of Scanning Electrochemical Microscopy for the Label-Free Interrogation of Antibody-Antigen Interactions: Part 2. Anal. Chim. Acta 2012, 741, 1–8. [Google Scholar] [CrossRef]
- Yu, D.; Du, K.; Liu, T.; Chen, G. Prognostic Value of Tumor Markers, NSE, CA125 and SCC, in Operable NSCLC Patients. Int. J. Mol. Sci. 2013, 14, 11145–11156. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Chen, X.; Wu, K.; Chen, D.; Ma, M.; Huang, Z.; Wu, W.; Li, C. White-Light-Exciting, Layer-by-Layer-Assembled ZnCdHgSe Quantum Dots/Polymerized Ionic Liquid Hybrid Film for Highly Sensitive Photoelectrochemical Immunosensing of Neuron Specific Enolase. Anal. Chem. 2015, 87, 4237–4244. [Google Scholar] [CrossRef]
- Barton, A.C.; Davis, F.; Higson, S.P.J. Labeless Immunosensor Assay for the Stroke Marker Protein Neuron Specific Enolase Based upon an Alternating Current Impedance Protocol. Anal. Chem. 2008, 80, 9411–9416. [Google Scholar] [CrossRef]
- Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Selective and Ultrasensitive Electrochemical Immunosensing of NSE Cancer Biomarker in Human Serum Using Epoxy-Substituted Poly(Pyrrole) Polymer Modified Disposable ITO Electrode. Sens. Actuators B Chem. 2020, 306, 127613. [Google Scholar] [CrossRef]
- Li, H.; Cao, Z.; Zhang, Y.; Lau, C.; Lu, J. Combination of Quantum Dot Fluorescence with Enzyme Chemiluminescence for Multiplexed Detection of Lung Cancer Biomarkers. Anal. Methods 2010, 2, 1236–1242. [Google Scholar] [CrossRef]
- Kalkal, A.; Pradhan, R.; Kadian, S.; Manik, G.; Packirisamy, G. Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer. ACS Appl. Bio Mater. 2020, 3, 4922–4932. [Google Scholar] [CrossRef] [PubMed]
- Acero Sánchez, J.L.; Fragoso, A.; Joda, H.; Suárez, G.; McNeil, C.J.; O’Sullivan, C.K. Site-Directed Introduction of Disulfide Groups on Antibodies for Highly Sensitive Immunosensors. Anal. Bioanal. Chem. 2016, 408, 5337–5346. [Google Scholar] [CrossRef] [PubMed]
- Junping, Z.; Zheng, W.; ZhengFang, T.; Yue, L.I.J.; PengHang, A.; Mingli, Z.; Hongzhi, A. Novel Electrochemical Platform Based on C3N4-Graphene Composite for the Detection of Neuron-Specific Enolase as a Biomarker for Lung Cancer. Sci. Rep. 2024, 14, 6350. [Google Scholar] [CrossRef]
- Han, J.; Zhuo, Y.; Chai, Y.Q.; Yuan, Y.L.; Yuan, R. Novel Electrochemical Catalysis as Signal Amplified Strategy for Label-Free Detection of Neuron-Specific Enolase. Biosens. Bioelectron. 2012, 31, 399–405. [Google Scholar] [CrossRef]
- Aono, K.; Aki, S.; Sueyoshi, K.; Hisamoto, H.; Endo, T. Development of Optical Biosensor Based on Photonic Crystal Made of TiO2 Using Liquid Phase Deposition. Jpn. J. Appl. Phys. 2016, 55, 08RE01. [Google Scholar] [CrossRef]
- Li, H.; Xiao, Q.; Lv, J.; Lei, Q.; Huang, Y. Dopamine Modified Hyperbranched TiO2 Arrays Based Ultrasensitive Photoelectrochemical Immunosensor for Detecting Neuron Specific Enolase. Anal. Biochem. 2017, 531, 48–55. [Google Scholar] [CrossRef]
- Toma, M.; Namihara, S.; Kajikawa, K. Direct Detection of Neuron-Specific Enolase Using a Spectrometer-Free Colorimetric Plasmonic Biosensor. Anal. Methods 2023, 15, 2755–2760. [Google Scholar] [CrossRef]
- Bertok, T.; Lorencova, L.; Chocholova, E.; Jane, E.; Vikartovska, A.; Kasak, P.; Tkac, J. Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers. ChemElectroChem 2019, 6, 989–1003. [Google Scholar] [CrossRef]
- Muñoz, J.; Montes, R.; Baeza, M. Trends in Electrochemical Impedance Spectroscopy Involving Nanocomposite Transducers: Characterization, Architecture Surface and Bio-Sensing. TrAC-Trends Anal. Chem. 2017, 97, 201–215. [Google Scholar] [CrossRef]
- Hou, L.; Cui, Y.; Xu, M.; Gao, Z.; Huang, J.; Tang, D. Graphene Oxide-Labeled Sandwich-Type Impedimetric Immunoassay with Sensitive Enhancement Based on Enzymatic 4-Chloro-1-Naphthol Oxidation. Biosens. Bioelectron. 2013, 47, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (Eis): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- K’Owino, I.O.; Sadik, O.A. Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring. Electroanalysis 2005, 17, 2101–2113. [Google Scholar] [CrossRef]
- Daniels, J.S.; Pourmand, N. Label-Free Impedance Biosensors: Opportunities and Challenges. Electroanalysis 2007, 19, 1239–1257. [Google Scholar] [CrossRef]
- Perumal, V.; Hashim, U. Advances in Biosensors: Principle, Architecture and Applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Demirhan, A.; Chianella, I.; Patil, S.B.; Khalid, A. A Low-Cost Miniature Immunosensor for Haemoglobin as a Device for the Future Detection of Gastrointestinal Bleeding. Analyst 2024, 149, 1081–1089. [Google Scholar] [CrossRef]
- Elshafey, R.; Tlili, C.; Abulrob, A.; Tavares, A.C.; Zourob, M. Label-Free Impedimetric Immunosensor for Ultrasensitive Detection of Cancer Marker Murine Double Minute 2 in Brain Tissue. Biosens. Bioelectron. 2013, 39, 220–225. [Google Scholar] [CrossRef]
- D’Aurelio, R.; Tothill, I.E.; Salbini, M.; Calò, F.; Mazzotta, E.; Malitesta, C.; Chianella, I. A Comparison of EIS and QCM NanoMIP-Based Sensors for Morphine. Nanomaterials 2021, 11, 3360. [Google Scholar] [CrossRef]
- Ayers, A.G.; Victoriano, C.M.; Sia, S.K. Integrated Device for Plasma Separation and Nucleic Acid Extraction from Whole Blood toward Point-of-Care Detection of Bloodborne Pathogens. Lab. Chip 2024, 24, 5124–5136. [Google Scholar] [CrossRef]
- Zhou, J.; Du, L.; Zou, L.; Zou, Y.; Hu, N.; Wang, P. An Ultrasensitive Electrochemical Immunosensor for Carcinoembryonic Antigen Detection Based on Staphylococcal Protein A—Au Nanoparticle Modified Gold Electrode. Sens. Actuators B Chem. 2014, 197, 220–227. [Google Scholar] [CrossRef]
- Pan, J.; Yang, Q. Antibody-Functionalized Magnetic Nanoparticles for the Detection of Carcinoembryonic Antigen Using a Flow-Injection Electrochemical Device. Anal. Bioanal. Chem. 2007, 388, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Wang, P.; Mao, H.; Hu, B.; Zhang, H.; Cheng, Z.; Wu, Z.; Bian, X.; Jia, C.; Jing, F.; et al. Multi-Nanomaterial Electrochemical Biosensor Based on Label-Free Graphene for Detecting Cancer Biomarkers. Biosens. Bioelectron. 2014, 55, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, X.; Ma, J.; Ma, Z. Ultrasensitive Detection of Carcinoembryonic Antigen by a Simple Label-Free Immunosensor. Sens. Actuators B Chem. 2013, 176, 1044–1050. [Google Scholar] [CrossRef]
- Liu, X.; Qin, Y.; Deng, C.; Xiang, J.; Li, Y. A Simple and Sensitive Impedimetric Aptasensor for the Detection of Tumor Markers Based on Gold Nanoparticles Signal Amplification. Talanta 2015, 132, 150–154. [Google Scholar] [CrossRef]
- Sun, X.; Ma, Z. Highly Stable Electrochemical Immunosensor for Carcinoembryonic Antigen. Biosens. Bioelectron. 2012, 35, 470–474. [Google Scholar] [CrossRef]
- Sun, G.; Ding, Y.N.; Ma, C.; Zhang, Y.; Ge, S.; Yu, J.; Song, X. Paper-Based Electrochemical Immunosensor for Carcinoembryonic Antigen Based on Three Dimensional Flower-like Gold Electrode and Gold-Silver Bimetallic Nanoparticles. Electrochim. Acta 2014, 147, 650–656. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Chen, H.; Chen, Z.; Lin, X. Amperometric Immunosensor for Carcinoembryonic Antigen Detection with Carbon Nanotube-Based Film Decorated with Gold Nanoclusters. Anal. Biochem. 2011, 414, 70–76. [Google Scholar] [CrossRef]
- Lin, D.; Wu, J.; Ju, H.; Yan, F. Nanogold/Mesoporous Carbon Foam-Mediated Silver Enhancement for Graphene-Enhanced Electrochemical Immunosensing of Carcinoembryonic Antigen. Biosens. Bioelectron. 2014, 52, 153–158. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, S.; Gao, J.; Zhao, J.; Xue, S.; Xu, W. Glucose Oxidase-Initiated Cascade Catalysis for Sensitive Impedimetric Aptasensor Based on Metal-Organic Frameworks Functionalized with Pt Nanoparticles and Hemin/G-Quadruplex as Mimicking Peroxidases. Biosens. Bioelectron. 2017, 98, 83–90. [Google Scholar] [CrossRef]
- Tang, H.; Chen, J.; Nie, L.; Kuang, Y.; Yao, S. A Label-Free Electrochemical Immunoassay for Carcinoembryonic Antigen (CEA) Based on Gold Nanoparticles (AuNPs) and Nonconductive Polymer Film. Biosens. Bioelectron. 2007, 22, 1061–1067. [Google Scholar] [CrossRef]
- Zhou, X.; Xue, S.; Jing, P.; Xu, W. A Sensitive Impedimetric Platform Biosensing Protein: Insoluble Precipitates Based on the Biocatalysis of Manganese(III) Meso-Tetrakis (4-N-Methylpyridiniumyl)-Porphyrinin in HCR-Assisted DsDNA. Biosens. Bioelectron. 2016, 86, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Deng, D.; Luo, L.; He, H.; Wang, Z. Water-Dispersible Graphene/Amphiphilic Pyrene Derivative Nanocomposite: High AuNPs Loading Capacity for CEA Electrochemical Immunosensing. Sens. Actuators B Chem. 2017, 248, 966–972. [Google Scholar] [CrossRef]
- Shan, J.; Ma, Z. Simultaneous Detection of Five Biomarkers of Lung Cancer by Electrochemical Immunoassay. Microchim. Acta 2016, 183, 2889–2897. [Google Scholar] [CrossRef]
- Wang, H.; Han, H.; Ma, Z. Conductive Hydrogel Composed of 1,3,5-Benzenetricarboxylic Acid and Fe3+ Used as Enhanced Electrochemical Immunosensing Substrate for Tumor Biomarker. Bioelectrochemistry 2017, 114, 48–53. [Google Scholar] [CrossRef]
- Cheng, S.; Hideshima, S.; Kuroiwa, S.; Nakanishi, T.; Osaka, T. Label-Free Detection of Tumor Markers Using Field Effect Transistor (FET)-Based Biosensors for Lung Cancer Diagnosis. Sens. Actuators B Chem. 2015, 212, 329–334. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, J.; Yu, B.; You, T. A Novel Self-Enhanced Electrochemiluminescence Immunosensor Based on Hollow Ru-SiO2@PEI Nanoparticles for NSE Analysis. Sci. Rep. 2016, 6, 22234. [Google Scholar] [CrossRef]
- Geißler, D.; Stufler, S.; Löhmannsröben, H.-G.; Hildebrandt, N. Six-Color Time-Resolved Förster Resonance Energy Transfer for Ultrasensitive Multiplexed Biosensing. J. Am. Chem. Soc. 2013, 135, 1102–1109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arabnejad, M.; Tothill, I.E.; Chianella, I. Impedimetric Biosensors for the Quantification of Serum Biomarkers for Early Detection of Lung Cancer. Biosensors 2024, 14, 624. https://doi.org/10.3390/bios14120624
Arabnejad M, Tothill IE, Chianella I. Impedimetric Biosensors for the Quantification of Serum Biomarkers for Early Detection of Lung Cancer. Biosensors. 2024; 14(12):624. https://doi.org/10.3390/bios14120624
Chicago/Turabian StyleArabnejad, Mahdi, Ibtisam E. Tothill, and Iva Chianella. 2024. "Impedimetric Biosensors for the Quantification of Serum Biomarkers for Early Detection of Lung Cancer" Biosensors 14, no. 12: 624. https://doi.org/10.3390/bios14120624
APA StyleArabnejad, M., Tothill, I. E., & Chianella, I. (2024). Impedimetric Biosensors for the Quantification of Serum Biomarkers for Early Detection of Lung Cancer. Biosensors, 14(12), 624. https://doi.org/10.3390/bios14120624