Flow-Based CL-SMIA for the Quantification of Protein Biomarkers from Nasal Secretions in Comparison with Sandwich ELISA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Buffers
2.2. Collection of Real Nasal Mucosal Lining Fluid Samples
2.3. Sandwich ELISA
Assay
2.4. Flow-Based CL-SMIA
2.4.1. Preparation of Microarray Chips
2.4.2. Measurements with Flow-Based CL-SMIA
2.5. Data Evaluation
3. Results and Discussion
3.1. ELISA
Calibration Curve
3.2. Flow-Based CL-SMIA
3.2.1. Optimization
3.2.2. Calibration
3.3. Measurements in Nasal Samples
3.4. Comparison of ELISA and CL-SMIA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Rifai, N.; Gillette, M.A.; Carr, S.A. Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nat. Biotechnol. 2006, 24, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.-M.; Simpson, R.J. Body fluid proteomics: Prospects for biomarker discovery. Proteomics Clin. Appl. 2007, 1, 1004–1015. [Google Scholar] [CrossRef] [PubMed]
- Riechelmann, H.; Deutschle, T.; Rozsasi, A.; Keck, T.; Polzehl, D.; Bürner, H. Nasal biomarker profiles in acute and chronic rhinosinusitis. Clin. Exp. Allergy 2005, 35, 1186–1191. [Google Scholar] [CrossRef]
- Zissler, U.M.; Ulrich, M.; Jakwerth, C.A.; Rothkirch, S.; Guerth, F.; Weckmann, M.; Schiemann, M.; Haller, B.; Schmidt-Weber, C.B.; Chaker, A.M. Biomatrix for upper and lower airway biomarkers in patients with allergic asthma. J. Allergy Clin. Immunol. 2018, 142, 1980–1983. [Google Scholar] [CrossRef] [Green Version]
- Randall, R.E.; Goodbourn, S. Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol. 2008, 89, 1–47. [Google Scholar] [CrossRef]
- Rebuli, M.E.; Speen, A.M.; Clapp, P.W.; Jaspers, I. Novel applications for a noninvasive sampling method of the nasal mucosa. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 312, L288–L296. [Google Scholar] [CrossRef] [Green Version]
- Hansel, T.T.; Tunstall, T.; Trujillo-Torralbo, M.-B.; Shamji, B.; Del-Rosario, A.; Dhariwal, J.; Kirk, P.D.W.; Stumpf, M.P.H.; Koopmann, J.; Telcian, A.; et al. A Comprehensive Evaluation of Nasal and Bronchial Cytokines and Chemokines Following Experimental Rhinovirus Infection in Allergic Asthma: Increased Interferons (IFN-γ and IFN-λ) and Type 2 Inflammation (IL-5 and IL-13). EBioMedicine 2017, 19, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, J.W.; Hamula, C.L.A.; Zhang, H.; Le, X.C. Assays for cytokines using aptamers. Methods 2006, 38, 324–330. [Google Scholar] [CrossRef]
- Krueger, A.; Stoll, T.; Shah, A.K.; Sinha, R.; Frazer, I.H.; Hill, M.M. Antibody-Free Multiplex Measurement of 23 Human Cytokines in Primary Cell Culture Secretome Using Targeted Mass Spectrometry. Anal. Chem. 2020, 92, 3742–3750. [Google Scholar] [CrossRef]
- Kim, S.T.; Muñoz-Grajales, C.; Dunn, S.E.; Schneider, R.; Johnson, S.R.; Touma, Z.; Ahmad, Z.; Bonilla, D.; Atenafu, E.G.; Hiraki, L.T.; et al. Interferon and interferon-induced cytokines as markers of impending clinical progression in ANA+ individuals without a systemic autoimmune rheumatic disease diagnosis. Arthritis Res. Ther. 2023, 25, 21. [Google Scholar] [CrossRef] [PubMed]
- Scavuzzo, M.C.; Rocchi, V.; Fattori, B.; Ambrogi, F.; Carpi, A.; Ruffoli, R.; Manganelli, S.; Giannessi, F. Cytokine secretion in nasal mucus of normal subjects and patients with allergic rhinitis. Biomed. Pharmacother. 2003, 57, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Khalifian, S.; Raimondi, G.; Brandacher, G. The use of luminex assays to measure cytokines. J. Investig. Dermatol. 2015, 135, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battaglia, T.M.; Masson, J.-F.; Sierks, M.R.; Beaudoin, S.P.; Rogers, J.; Foster, K.N.; Holloway, G.A.; Booksh, K.S. Quantification of cytokines involved in wound healing using surface plasmon resonance. Anal. Chem. 2005, 77, 7016–7023. [Google Scholar] [CrossRef]
- Rahimian, A.; Siltanen, C.; Feyzizarnagh, H.; Escalante, P.; Revzin, A. Microencapsulated Immunoassays for Detection of Cytokines in Human Blood. ACS Sens. 2019, 4, 578–585. [Google Scholar] [CrossRef]
- Joung, H.-A.; Hong, D.-G.; Kim, M.-G. A high sensitivity chemiluminescence-based CMOS image biosensor for the detection of human interleukin 5 (IL-5). In Proceedings of the 2012 IEEE Sensors, Taipei, Taiwan, 28–31 October; Staff, I., Ed.; IEEE: Piscataway, NJ, USA, 2012; pp. 1–3, ISBN 978-1-4577-1767-3. [Google Scholar]
- Seidel, M.; Niessner, R. Automated analytical microarrays: A critical review. Anal. Bioanal. Chem. 2008, 391, 1521–1544. [Google Scholar] [CrossRef]
- Boehm, N.; Riechardt, A.I.; Wiegand, M.; Pfeiffer, N.; Grus, F.H. Proinflammatory cytokine profiling of tears from dry eye patients by means of antibody microarrays. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7725–7730. [Google Scholar] [CrossRef] [Green Version]
- Thwaites, R.S.; Ito, K.; Chingono, J.M.S.; Coates, M.; Jarvis, H.C.; Tunstall, T.; Anderson-Dring, L.; Cass, L.; Rapeport, G.; Openshaw, P.J.; et al. Nasosorption as a Minimally Invasive Sampling Procedure: Mucosal Viral Load and Inflammation in Primary RSV Bronchiolitis. J. Infect. Dis. 2017, 215, 1240–1244. [Google Scholar] [CrossRef]
- Knight, P.R.; Sreekumar, A.; Siddiqui, J.; Laxman, B.; Copeland, S.; Chinnaiyan, A.; Remick, D.G. Development of a sensitive microarray immunoassay and comparison with standard enzyme-linked immunoassay for cytokine analysis. Shock 2004, 21, 26–30. [Google Scholar] [CrossRef]
- Chen, P.; Chung, M.T.; McHugh, W.; Nidetz, R.; Li, Y.; Fu, J.; Cornell, T.T.; Shanley, T.P.; Kurabayashi, K. Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 2015, 9, 4173–4181. [Google Scholar] [CrossRef] [Green Version]
- Matson, R.S. Lateral Flow Microarray-Based ELISA for Cytokines. Methods Mol. Biol. 2023, 2612, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Seidel, M.; Niessner, R. Chemiluminescence microarrays in analytical chemistry: A critical review. Anal. Bioanal. Chem. 2014, 406, 5589–5612. [Google Scholar] [CrossRef] [PubMed]
- Klüpfel, J.; Paßreiter, S.; Weidlein, N.; Knopp, M.; Ungerer, M.; Protzer, U.; Knolle, P.; Hayden, O.; Elsner, M.; Seidel, M. Fully Automated Chemiluminescence Microarray Analysis Platform for Rapid and Multiplexed SARS-CoV-2 Serodiagnostics. Anal. Chem. 2022, 94, 2855–2864. [Google Scholar] [CrossRef] [PubMed]
- Bemetz, J.; Kober, C.; Meyer, V.K.; Niessner, R.; Seidel, M. Succinylated Jeffamine ED-2003 coated polycarbonate chips for low-cost analytical microarrays. Anal. Bioanal. Chem. 2019, 411, 1943–1955. [Google Scholar] [CrossRef]
- Bose, I.; Ohlander, A.; Kutter, C.; Russom, A. An integrated all foil based micro device for point of care diagnostic applications. Sens. Actuators B Chem. 2018, 259, 917–925. [Google Scholar] [CrossRef]
- Thwaites, R.S.; Jarvis, H.C.; Singh, N.; Jha, A.; Pritchard, A.; Fan, H.; Tunstall, T.; Nanan, J.; Nadel, S.; Kon, O.M.; et al. Absorption of Nasal and Bronchial Fluids: Precision Sampling of the Human Respiratory Mucosa and Laboratory Processing of Samples. J. Vis. Exp. 2018, 131, e56413. [Google Scholar] [CrossRef] [Green Version]
- Klüpfel, J.; Paßreiter, S.; Rumpf, M.; Christa, C.; Holthoff, H.-P.; Ungerer, M.; Lohse, M.; Knolle, P.; Protzer, U.; Elsner, M.; et al. Automated detection of neutralizing SARS-CoV-2 antibodies in minutes using a competitive chemiluminescence immunoassay. Anal. Bioanal. Chem. 2023, 415, 391–404. [Google Scholar] [CrossRef]
- Neumair, J.; Elsner, M.; Seidel, M. Flow-Based Chemiluminescence Microarrays as Screening Platform for Affinity Binders to Capture and Elute Bacteria. Sensors 2022, 22, 8606. [Google Scholar] [CrossRef]
- Sollweck, K.; Streich, P.; Elsner, M.; Seidel, M. A Chip-Based Colony Fusion Recombinase Polymerase Amplification Assay for Monitoring of Antimicrobial Resistance Genes and Their Carrying Species in Surface Water. ACS EST Water 2021, 1, 584–594. [Google Scholar] [CrossRef]
Optimization of | Pre-Incubation/min | Incubation Chip/min | DAB /ng mL−1 | Sample Delivery /μL s−1 | Dilution Strep-HRP |
---|---|---|---|---|---|
Strep-HRP | 30 | 5 | 625.0 | 0.5 | 1:1500, 1:2000, 1:2500 |
Pre-incubation | 15, 30, 45, 60 | 5 | 625.0 | 0.5 | 1:2500 |
Incubation chip | 45 | 0, 1, 5, 10, 20 | 625.0 | 0.5 | 1:2500 |
Sample delivery | 45 | 20 | 625.0 | 0.5, 1.0, 2.0, 4.0, 8.0 | 1:2500 |
DAB concentration | 45 | 20 | 312.5, 625.0, 937.5, 1250, 1875 | 0.5 | 1:2500 |
Final | 45 | 20 | 312.5 | 0.5 | 1:2500 |
Process | Volume/μL | Time/min | Comments |
---|---|---|---|
Pre-incubation | Sample 50 | 45 | |
DAB 1.25 | |||
BSA 6.9 | |||
Injection into chip | 60 | 20 | With pipette |
Insert chip into device | |||
Volume/μL | Flow rate/μL s−1 | ||
Direct sample over chip | 50 | 0.5 | |
Wash chip | 1500 | 325 | 2 increments, pause 1 s |
Incubate strep-HRP | 160 | 50 | |
600 | 2 | ||
Wash chip | 1500 | 325 | 2 increments, pause 1 s |
Add CL reagents | 400 | 100 | Mixture 1:1 |
Take image | 60 s exposure | ||
Flush device | 2500 | 500 | Sample loop |
2500 | 500 | Sample way | |
2500 | 500 | Chip (extra washing chip) |
Cost | Comments | |
---|---|---|
PC-chip surface | 0.21 € | PC foil and coating |
Spotting | 0.002 € | Spotting buffer and CAB antibody |
Assembly of microarray chip | 1.38 € | POM carrier and adhesive |
Total | 1.60 € |
Assay Step | ELISA | CL-SMIA | |
---|---|---|---|
Sample incubation | 2 h | (2) 20 min on-chip | |
Blocking | 1 h | - | |
DAB incubation | 2 h | (1) 45 min pre-incubation | |
Detection | 40 min | 10 min | |
Total | 1 measurement | 5 h 40 min | 1 h 15 min |
Duplicate | 5 h 40 min | 1 h 30 min | |
96 measurements | 5 h 40 min | 25 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumair, J.; Kröger, M.; Stütz, E.; Jerin, C.; Chaker, A.M.; Schmidt-Weber, C.B.; Seidel, M. Flow-Based CL-SMIA for the Quantification of Protein Biomarkers from Nasal Secretions in Comparison with Sandwich ELISA. Biosensors 2023, 13, 670. https://doi.org/10.3390/bios13070670
Neumair J, Kröger M, Stütz E, Jerin C, Chaker AM, Schmidt-Weber CB, Seidel M. Flow-Based CL-SMIA for the Quantification of Protein Biomarkers from Nasal Secretions in Comparison with Sandwich ELISA. Biosensors. 2023; 13(7):670. https://doi.org/10.3390/bios13070670
Chicago/Turabian StyleNeumair, Julia, Marie Kröger, Evamaria Stütz, Claudia Jerin, Adam M. Chaker, Carsten B. Schmidt-Weber, and Michael Seidel. 2023. "Flow-Based CL-SMIA for the Quantification of Protein Biomarkers from Nasal Secretions in Comparison with Sandwich ELISA" Biosensors 13, no. 7: 670. https://doi.org/10.3390/bios13070670
APA StyleNeumair, J., Kröger, M., Stütz, E., Jerin, C., Chaker, A. M., Schmidt-Weber, C. B., & Seidel, M. (2023). Flow-Based CL-SMIA for the Quantification of Protein Biomarkers from Nasal Secretions in Comparison with Sandwich ELISA. Biosensors, 13(7), 670. https://doi.org/10.3390/bios13070670