Fluorescent Materials with Excellent Biocompatibility and Their Application in Bio-Sensing, Bio-Imaging
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pavlova, M.A.; Panchenko, P.A.; Alekhina, E.A.; Ignatova, A.A.; Plyutinskaya, A.D.; Pankratov, A.A.; Pritmov, D.A.; Grin, M.A.; Feofanov, A.V.; Fedorova, O.A. A New Glutathione-Cleavable Theranostic for Photodynamic Therapy Based on Bacteriochlorin e and Styrylnaphthalimide Derivatives. Biosensors 2022, 12, 1149. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Liu, Q.; Liu, X.; Fu, S.; Zhang, H.; Li, S.; Chen, S.; Hou, P. Dual Response Site Fluorescent Probe for Highly Sensitive Detection of Cys/Hcy and GSH In Vivo through Two Different Emission Channels. Biosensors 2022, 12, 1056. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, A.Z.; Liu, J. Surfactant-Assisted Label-Free Fluorescent Aptamer Biosensors and Binding Assays. Biosensors 2023, 13, 434. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, J.; Leng, Y.; Dai, Y.; Xie, C.; Zhang, Z.; Zhu, M.; Peng, X. Rational Design of High-Performance Hemithioindigo-Based Photoswitchable AIE Photosensitizer and Enabling Reversible Control Singlet Oxygen Generation. Biosensors 2023, 13, 324. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yao, T.; Xue, J.; Guo, Y.; Xu, X. A Novel Fluorescent Probe for the Detection of Hydrogen Peroxide. Biosensors 2023, 13, 658. [Google Scholar] [CrossRef] [PubMed]
- Baruah, M.; Jana, A.; Pareek, N.; Singh, S.; Samanta, A. A Ratiometric Fluorescent Probe for Hypochlorite and Lipid Droplets to Monitor Oxidative Stress. Biosensors 2023, 13, 662. [Google Scholar] [CrossRef] [PubMed]
- Alacid, Y.; Esquembre, R.; Montilla, F.; Martínez-Tomé, M.J.; Mateo, C.R. Fluorescent Nanocomposite Hydrogels Based on Conjugated Polymer Nanoparticles as Platforms for Alkaline Phosphatase Detection. Biosensors 2023, 13, 408. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, Q.; Xiang, C.; Liu, G.; Li, J. A Novel Aggregation-Induced Emission Fluorescent Probe for Detection of β-Amyloid Based on Pyridinyltriphenylamine and Quinoline–Malononitrile. Biosensors 2023, 13, 610. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, L.; Ran, X.; Tang, H.; Cao, D. Green, Efficient Detection and Removal of Hg2+ by Water-Soluble Fluorescent Pillar[5]arene Supramolecular Self-Assembly. Biosensors 2022, 12, 571. [Google Scholar] [CrossRef] [PubMed]
- Leng, X.; Wang, D.; Mi, Z.; Zhang, Y.; Yang, B.; Chen, F. Novel Fluorescence Probe toward Cu2+ Based on Fluorescein Derivatives and Its Bioimaging in Cells. Biosensors 2022, 12, 732. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhang, H.; Yang, B.; Leng, X. Development of a Fluorescein-Based Probe with an “Off–On” Mechanism for Selective Detection of Copper (II) Ions and Its Application in Imaging of Living Cells. Biosensors 2023, 13, 301. [Google Scholar] [CrossRef] [PubMed]
- Speghini, R.; Buscato, C.; Marcato, S.; Fortunati, I.; Baldan, B.; Ferrante, C. Response of Coccomyxa cimbrica sp.nov. to Increasing Doses of Cu(II) as a Function of Time: Comparison between Exposure in a Microfluidic Device or with Standard Protocols. Biosensors 2023, 13, 417. [Google Scholar] [CrossRef]
- Sun, X.; Guo, F.; Ye, Q.; Zhou, J.; Han, J.; Guo, R. Fluorescent Sensing of Glutathione and Related Bio-Applications. Biosensors 2023, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, S.A.; Hsiao, W.W.-W.; Hussain, L.; Aman, H.; Le, T.-N.; Rafique, M. Recent Development of Fluorescent Nanodiamonds for Optical Biosensing and Disease Diagnosis. Biosensors 2022, 12, 1181. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, J.; Li, C.; Zhang, H. Conjugated Aggregation-Induced Fluorescent Materials for Biofluorescent Probes: A Review. Biosensors 2023, 13, 159. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Han, D.; Wang, H.; Zheng, M.; Xu, Y.; Zhang, H. Organic Semiconducting Nanoparticles for Biosensor: A Review. Biosensors 2023, 13, 494. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Wang, Y.; Zhang, D.; Zhu, M. Fluorescent Materials with Excellent Biocompatibility and Their Application in Bio-Sensing, Bio-Imaging. Biosensors 2023, 13, 906. https://doi.org/10.3390/bios13100906
Zheng M, Wang Y, Zhang D, Zhu M. Fluorescent Materials with Excellent Biocompatibility and Their Application in Bio-Sensing, Bio-Imaging. Biosensors. 2023; 13(10):906. https://doi.org/10.3390/bios13100906
Chicago/Turabian StyleZheng, Meng, Yalong Wang, Deteng Zhang, and Mingqiang Zhu. 2023. "Fluorescent Materials with Excellent Biocompatibility and Their Application in Bio-Sensing, Bio-Imaging" Biosensors 13, no. 10: 906. https://doi.org/10.3390/bios13100906
APA StyleZheng, M., Wang, Y., Zhang, D., & Zhu, M. (2023). Fluorescent Materials with Excellent Biocompatibility and Their Application in Bio-Sensing, Bio-Imaging. Biosensors, 13(10), 906. https://doi.org/10.3390/bios13100906