Application and Progress of Chemometrics in Voltammetric Biosensing
Abstract
:1. Introduction
2. Voltammetric Analysis Techniques Commonly Used in Biosensing
3. Chemometric Tools in Biosensing
- ●
- Exploratory analysis of the data to obtain the relationship between the data.
- ●
- Qualitative analysis of target analytes to deal with the classification and discrimination of samples.
- ●
- Quantitative prediction of analytes to achieve the determination of indicators of interest for analytes.
3.1. Classical Qualitative Analysis Methods
3.2. Classical Quantitative Analysis Methods
3.3. Deep Learning Methods
4. Applications of Voltammetric Biosensing in POCT
5. Conclusions
- ●
- Chemometrics is increasingly becoming the dominant driving force of voltammetric-based biosensing research. Chemometrics and machine learning help to better observe and understand the experimental phenomena that result from the interaction of variables under study. It also provides diverse solutions to problems in biosensing while delivering reliable and valuable results.
- ●
- Prior research applied deep learning methods to process the responses of voltammetric biosensors or bioelectronic tongues, in stark contrast to the popularity of deep learning in other fields of chemistry. Although the current deep learning models face the problems of small data size and lack of interpretability in the processing of voltammetric data, chemical analysts are still encouraged to learn the core ideas of deep learning. This is not only because the powerful data transformation capabilities of deep learning methods can retrieve meaningful results from complex voltammetric signals, but also because chemical analysts can provide chemical knowledge support for deep learning methods in data analysis of voltammetric biosensing. The contribution of deep learning to other fields of chemistry shows its enormous potential for voltammetric biosensing applications.
- ●
- Smartphone-based electrochemical analysis is gradually becoming a reliable solution for POCT in many fields. An easy-to-implement voltammetric method has helped remove the limitations of traditional laboratory assays. Although the implementation of the voltammetric method needs to rely on additional detection equipment, its circuit design and driving method are relatively clear. A large number of portable voltammetric analyzers have been developed. At the same time, the good sensitivity and fast detection speed of voltammetric technology and the great progress made in miniaturization, modularization and cost reduction of biosensing elements (electrodes, detection devices) provide the premise for POCT. Chemometric methods perform a decision-making analysis of the acquired voltammetric data, providing meaningful results for the detection of target analytes. There are reasons to believe that functional devices with mobile computing and multiple connectivity methods represented by smartphones can become the key to the combination of portable electrochemical analysis platforms and chemometric methods. It is expected that an intelligent platform for on-site detection and analysis using voltammetric biosensing systems can be applied in the fields of food industry, environmental monitoring and medical health.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lowe, C.R. Biosensors. Trends Biotechnol. 1984, 2, 59–65. [Google Scholar] [CrossRef]
- Thevenot, D.R.; Tóth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef] [Green Version]
- Cammann, K.; Lemke, U.; Rohen, A.; Sander, J.; Wilken, H.; Winter, B. Chemical Sensors and Biosensors—Principles and Applications. Angew. Chem. Int. Ed. Engl. 1991, 30, 516–539. [Google Scholar] [CrossRef]
- Chaubey, A.; Malhotra, B.D. Mediated Biosensors. Biosens. Bioelectron. 2002, 17, 441–456. [Google Scholar] [CrossRef]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V.; et al. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef] [Green Version]
- Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Recent Progress in Biosensors for Environmental Monitoring: A Review. Sensors 2017, 17, 2918. [Google Scholar] [CrossRef] [Green Version]
- Diculescu, V.C.; Chiorcea-Paquim, A.-M.; Oliveira-Brett, A.M. Applications of a DNA-Electrochemical Biosensor. TrAC Trends Anal. Chem. 2016, 79, 23–36. [Google Scholar] [CrossRef]
- Sykes, K.S.; White, R.J. Nucleic Acid Identity, Structure, and Flexibility Affect the Electrochemical Signal of Tethered Redox Molecules upon Biopolymer Collapse. Langmuir 2021, 37, 12466–12475. [Google Scholar] [CrossRef]
- Martynko, E.; Kirsanov, D. Application of Chemometrics in Biosensing: A Brief Review. Biosensors 2020, 10, 100. [Google Scholar] [CrossRef]
- del Valle, M. Electronic Tongues Employing Electrochemical Sensors. Electroanalysis 2010, 22, 1539–1555. [Google Scholar] [CrossRef] [Green Version]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry). Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Qian, W.; Huang, J.; Wu, B.; Yang, J.; Xue, T.; Ge, Y.; Wen, Y. Electrochemical Detection Combined with Machine Learning for Intelligent Sensing of Maleic Hydrazide by Using Carboxylated PEDOT Modified with Copper Nanoparticles. Microchim. Acta 2019, 186, 543. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Turner, A.P.F. Multi-Phase Bioelectrochemical Sensors. TrAC Trends Anal. Chem. 1995, 14, 304–310. [Google Scholar] [CrossRef]
- Wasilewski, T.; Kamysz, W.; Gębicki, J. Bioelectronic Tongue: Current Status and Perspectives. Biosens. Bioelectron. 2020, 150, 111923. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A Review of the Identification and Detection of Heavy Metal Ions in the Environment by Voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef]
- Chen, A.; Shah, B. Electrochemical Sensing and Biosensing Based on Square Wave Voltammetry. Anal. Methods 2013, 5, 2158–2173. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, Y.; Wang, J.; Zhang, W.; Ren, Q. The Measurement Principles, Working Parameters and Configurations of Voltammetric Electronic Tongues and Its Applications for Foodstuff Analysis. J. Food Eng. 2018, 217, 75–92. [Google Scholar] [CrossRef]
- Chauhan, C. Contemporary Voltammetric Techniques and Its Application to Pesticide Analysis: A Review. Mater. Today Proc. 2021, 37, 3231–3240. [Google Scholar] [CrossRef]
- Torrecilla, J.S.; Mena, M.L.; Yáñez-Sedeño, P.; García, J. A Neural Network Approach Based on Gold-Nanoparticle Enzyme Biosensor. J. Chemom. 2008, 22, 46–53. [Google Scholar] [CrossRef]
- Nesakumar, N.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Cyclic Voltammetric Acetylcholinesterase Biosensor for the Detection of Captan in Apple Samples with the Aid of Chemometrics. Anal. Bioanal. Chem. 2015, 407, 4863–4868. [Google Scholar] [CrossRef]
- del Valle, M. Bioelectronic Tongues Employing Electrochemical Biosensors. Trends Bioelectroanal. 2016, 6, 143–202. [Google Scholar] [CrossRef]
- Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef] [PubMed]
- Viet, N.X.; Kishimoto, S.; Ohno, Y. Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity. ACS Appl. Mater. Interfaces 2019, 11, 6389–6395. [Google Scholar] [CrossRef] [PubMed]
- Achterberg, E.P. Laboratory Techniques in Electroanalytical Chemistry. TrAC Trends Anal. Chem. 1996, 15, 550. [Google Scholar] [CrossRef]
- Kissinger, P.T.; Heineman, W.R. Cyclic Voltammetry. J. Chem. Educ. 1983, 60, 702. [Google Scholar] [CrossRef]
- Lovrić, M.; Osteryoung, J. Theory of Differential Normal Pulse Voltammetry. Electrochim. Acta 1982, 27, 963–968. [Google Scholar] [CrossRef]
- Osteryoung, J.G.; Osteryoung, R.A. Square Wave Voltammetry. Anal. Chem. 1985, 57, 101A. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, Y.; Lin, L.; Li, Y.; Chen, W.; Chen, J.; Lei, Y.; Lin, L.; Liu, A.; Lin, X.; et al. Nanoporous Gold Electrode Prepared from Two-Step Square Wave Voltammetry (SWV) and Its Application for Electrochemical DNA Biosensing of Lung Resistance Related Protein (LRP) Gene. J. Electroanal. Chem. 2019, 840, 165–173. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, N.; Malhotra, B.D. Ultrasensitive Biosensing Platform Based on Yttria Doped Zirconia-Reduced Graphene Oxide Nanocomposite for Detection of Salivary Oral Cancer Biomarker. Bioelectrochemistry 2021, 140, 107799. [Google Scholar] [CrossRef]
- Low, S.S.; Pan, Y.; Ji, D.; Li, Y.; Lu, Y.; He, Y.; Chen, Q.; Liu, Q. Smartphone-Based Portable Electrochemical Biosensing System for Detection of Circulating MicroRNA-21 in Saliva as a Proof-of-Concept. Sens. Actuators B Chem. 2020, 308, 127718. [Google Scholar] [CrossRef]
- Orzari, L.O.; Cristina de Freitas, R.; Aparecida de Araujo Andreotti, I.; Gatti, A.; Janegitz, B.C. A Novel Disposable Self-Adhesive Inked Paper Device for Electrochemical Sensing of Dopamine and Serotonin Neurotransmitters and Biosensing of Glucose. Biosens. Bioelectron. 2019, 138, 111310. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, T.; Bohidar, H.B.; Solanki, P.R. Carbon Dots-Modified Chitosan Based Electrochemical Biosensing Platform for Detection of Vitamin D. Int. J. Biol. Macromol. 2018, 109, 687–697. [Google Scholar] [CrossRef] [PubMed]
- AlAqad, K.M.; Suleiman, R.; Al Hamouz, O.C.S.; Saleh, T.A. Novel Graphene Modified Carbon-Paste Electrode for Promazine Detection by Square Wave Voltammetry. J. Mol. Liq. 2018, 252, 75–82. [Google Scholar] [CrossRef]
- da Silva, W.; Ghica, M.E.; Brett, C.M.A. Novel Nanocomposite Film Modified Electrode Based on Poly(Brilliant Cresyl Blue)-Deep Eutectic Solvent/Carbon Nanotubes and Its Biosensing Applications. Electrochim. Acta 2019, 317, 766–777. [Google Scholar] [CrossRef]
- Xu, F.; Ru, H.-Y.; Sun, L.-X.; Zou, Y.-J.; Jiao, C.-L.; Wang, T.-Y.; Zhang, J.-M.; Zheng, Q.; Zhou, H.-Y. A Novel Sensor Based on Electrochemical Polymerization of Diglycolic Acid for Determination of Acetaminophen. Biosens. Bioelectron. 2012, 38, 27–30. [Google Scholar] [CrossRef]
- Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Development of an Electrochemical RNA-Aptasensor to Detect Human Osteopontin. Biosens. Bioelectron. 2015, 71, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Negahdary, M.; Behjati-Ardakani, M.; Sattarahmady, N.; Yadegari, H.; Heli, H. Electrochemical Aptasensing of Human Cardiac Troponin I Based on an Array of Gold Nanodumbbells-Applied to Early Detection of Myocardial Infarction. Sens. Actuators B Chem. 2017, 252, 62–71. [Google Scholar] [CrossRef]
- Negahdary, M.; Heli, H. An Electrochemical Troponin I Peptisensor Using a Triangular Icicle-like Gold Nanostructure. Biochem. Eng. J. 2019, 151, 107326. [Google Scholar] [CrossRef]
- Dheepthi Gunavathana, S.; Girija, S.; Wilson, J.; Cyrac Peter, A. ZnO Nanorods Bonded Polythiophene Nanocomposite: An Enhanced Electrochemical Voltammetric Biosensing of L-Tryptophan. Bull. Mater. Sci. 2022, 45, 57. [Google Scholar] [CrossRef]
- Janegitz, B.C.; Medeiros, R.A.; Rocha-Filho, R.C.; Fatibello-Filho, O. Direct Electrochemistry of Tyrosinase and Biosensing for Phenol Based on Gold Nanoparticles Electrodeposited on a Boron-Doped Diamond Electrode. Diam. Relat. Mater. 2012, 25, 128–133. [Google Scholar] [CrossRef]
- Gao, H.; Wen, L.; Tian, J.; Wu, Y.; Liu, F.; Lin, Y.; Hua, W.; Wu, G. A Portable Electrochemical Immunosensor for Highly Sensitive Point-of-Care Testing of Genetically Modified Crops. Biosens. Bioelectron. 2019, 142, 111504. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Umasankar, Y.; Ramasamy, R.P. A Novel Bi-Enzyme Electrochemical Biosensor for Selective and Sensitive Determination of Methyl Salicylate. Biosens. Bioelectron. 2016, 81, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Bilal, S. Cyclic Voltammetry. In Encyclopedia of Applied Electrochemistry; Springer: New York, NY, USA, 2014; pp. 285–289. [Google Scholar] [CrossRef]
- Smyth, M. Cyclic Voltammetry. TrAC Trends Anal. Chem. 1994, 13, 341. [Google Scholar] [CrossRef]
- Evans, D.H.; O’Connell, K.M.; Petersen, R.A.; Kelly, M.J. Cyclic Voltammetry. J. Chem. Educ. 1983, 60, 290. [Google Scholar] [CrossRef]
- Adeloju, S.B.; Bond, A.M.; Briggs, M.H. Multielement Determination in Biological Materials by Differential Pulse Voltammetry. Anal. Chem. 1985, 57, 1386–1390. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, N.; Men, H.; Li, S.; Lu, Y.; Low, S.S.; Li, X.; Zhu, L.; Cheng, C.; Xu, G.; et al. Salivary Cortisol Determination on Smartphone-Based Differential Pulse Voltammetry System. Sensors 2020, 20, 1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, M.A.; Patil, H.K.; Bodkhe, G.A.; Yasuzawa, M.; Koinkar, P.; Ramanaviciene, A.; Shirsat, M.D.; Ramanavicius, A. EDTA-Modified PANI/SWNTs Nanocomposite for Differential Pulse Voltammetry Based Determination of Cu(II) Ions. Sens. Actuators B Chem. 2018, 260, 331–338. [Google Scholar] [CrossRef]
- Mirceski, V.; Gulaboski, R.; Lovric, M.; Bogeski, I.; Kappl, R.; Hoth, M. Square-Wave Voltammetry: A Review on the Recent Progress. Electroanalysis 2013, 25, 2411–2422. [Google Scholar] [CrossRef] [Green Version]
- Gulaboski, R.; Mirčeski, V.; Bogeski, I.; Hoth, M. Protein Film Voltammetry: Electrochemical Enzymatic Spectroscopy. A Review on Recent Progress. J. Solid State Electrochem. 2012, 16, 2315–2328. [Google Scholar] [CrossRef] [Green Version]
- El Mhammedi, M.A.; Achak, M.; Najih, R.; Bakasse, M.; Chtaini, A. Micro-Extraction and Trace Determination of Cadmium by Square Wave Voltammetry at the Carbon Paste Electrode Impregnated with Ca10(PO4)6(OH)2. Mater. Chem. Phys. 2009, 115, 567–571. [Google Scholar] [CrossRef]
- Pohanka, M.; Bandouchova, H.; Sobotka, J.; Sedlackova, J.; Soukupova, I.; Pikula, J. Ferric Reducing Antioxidant Power and Square Wave Voltammetry for Assay of Low Molecular Weight Antioxidants in Blood Plasma: Performance and Comparison of Methods. Sensors 2009, 9, 9094–9103. [Google Scholar] [CrossRef] [PubMed]
- Teniou, A.; Rhouati, A.; Marty, J.-L. Mathematical Modelling of Biosensing Platforms Applied for Environmental Monitoring. Chemosensors 2021, 9, 50. [Google Scholar] [CrossRef]
- Granero, A.M.; Fernández, H.; Zon, M.A.; Robledo, S.N.; Pierini, G.D.; Di Tocco, A.; Carrillo Palomino, R.A.; Maccio, S.; Riberi, W.I.; Arévalo, F.J. Development of Electrochemical Sensors/Biosensors to Detect Natural and Synthetic Compounds Related to Agroalimentary, Environmental and Health Systems in Argentina. A Review of the Last Decade. Chemosensors 2021, 9, 294. [Google Scholar] [CrossRef]
- Asadollahi-Baboli, M.; Mani-Varnosfaderani, A. Rapid and Simultaneous Determination of Tetracycline and Cefixime Antibiotics by Mean of Gold Nanoparticles-Screen Printed Gold Electrode and Chemometrics Tools. Measurement 2014, 47, 145–149. [Google Scholar] [CrossRef]
- Bonet-San-Emeterio, M.; González-Calabuig, A.; del Valle, M. Artificial Neural Networks for the Resolution of Dopamine and Serotonin Complex Mixtures Using a Graphene-Modified Carbon Electrode. Electroanalysis 2019, 31, 390–397. [Google Scholar] [CrossRef]
- Pérez-Ràfols, C.; Serrano, N.; Ariño, C.; Esteban, M.; Díaz-Cruz, J.M. Voltammetric Electronic Tongues in Food Analysis. Sensors 2019, 19, 4261. [Google Scholar] [CrossRef] [Green Version]
- Lavine, B.; Workman, J. Chemometrics. Anal. Chem. 2008, 80, 4519–4531. [Google Scholar] [CrossRef]
- Massart, D.L.; Vandeginste, B.G.M.; Buydens, L.M.C.; Jong, S.D.; Lewi, P.J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics: Part A; Elsevier Science: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Hu, Z.; Fang, W.; Gou, T.; Wu, W.; Hu, J.; Zhou, S.; Mu, Y. A Novel Method Based on a Mask R-CNN Model for Processing DPCR Images. Anal. Methods 2019, 11, 3410–3418. [Google Scholar] [CrossRef]
- Duan, Q.; Lee, J.; Zheng, S.; Chen, J.; Luo, R.; Feng, Y.; Xu, Z. A Color-Spectral Machine Learning Path for Analysis of Five Mixed Amino Acids. Chem. Commun. 2020, 56, 1058–1061. [Google Scholar] [CrossRef]
- Govindaraju, H.; Sami, M.A.; Hassan, U. Particle Quantification from a Smartphone-Based Biosensor Using Deep Convolutional Neural Network for Clinical Diagnosis. In Proceedings of the 2022 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), Houston, TX, USA, 10–11 March 2022; pp. 113–116. [Google Scholar]
- Dean, S.N.; Shriver-Lake, L.C.; Stenger, D.A.; Erickson, J.S.; Golden, J.P.; Trammell, S.A. Machine Learning Techniques for Chemical Identification Using Cyclic Square Wave Voltammetry. Sensors 2019, 19, 2392. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Ji, W.; Jiang, Y.; Yu, P.; Mao, L. Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angew. Chem. 2021, 133, 23970–23976. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Graves, A. Generating Sequences With Recurrent Neural Networks. arXiv 2013, arXiv:1308.0850. [Google Scholar]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef]
- Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; IEEE: Columbus, OH, USA, 2014; pp. 1701–1708. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal Component Analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Phil. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal Component Analysis. WIREs Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Salvo-Comino, C.; Martín-Bartolomé, P.; Pura, J.L.; Perez-Gonzalez, C.; Martin-Pedrosa, F.; García-Cabezón, C.; Rodríguez-Méndez, M.L. Improving the Performance of a Bioelectronic Tongue Using Silver Nanowires: Application to Milk Analysis. Sens. Actuators B Chem. 2022, 364, 131877. [Google Scholar] [CrossRef]
- Medina-Plaza, C.; García-Hernández, C.; de Saja, J.A.; Fernández-Escudero, J.A.; Barajas, E.; Medrano, G.; García-Cabezón, C.; Martin-Pedrosa, F.; Rodriguez-Mendez, M.L. The Advantages of Disposable Screen-Printed Biosensors in a Bioelectronic Tongue for the Analysis of Grapes. LWT-Food Sci. Technol. 2015, 62, 940–947. [Google Scholar] [CrossRef] [Green Version]
- Medina-Plaza, C.; de Saja, J.A.; Fernández-Escudero, J.A.; Barajas, E.; Medrano, G.; Rodriguez-Mendez, M.L. Array of Biosensors for Discrimination of Grapes According to Grape Variety, Vintage and Ripeness. Anal. Chim. Acta 2016, 947, 16–22. [Google Scholar] [CrossRef]
- Belhumeur, P.N.; Hespanha, J.P.; Kriegman, D.J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Bylesjö, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS Discriminant Analysis: Combining the Strengths of PLS-DA and SIMCA Classification. J. Chemom. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Dudoit, S.; Fridlyand, J.; Speed, T.P. Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. J. Am. Stat. Assoc. 2002, 97, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Apetrei, C.; Iticescu, C.; Georgescu, L.P. Multisensory System Used for the Analysis of the Water in the Lower Area of River Danube. Nanomaterials 2019, 9, 891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Méndez, M.L.; Gay, M.; Apetrei, C.; De Saja, J.A. Biogenic Amines and Fish Freshness Assessment Using a Multisensor System Based on Voltammetric Electrodes. Comparison between CPE and Screen-Printed Electrodes. Electrochim. Acta 2009, 54, 7033–7041. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Application of Voltammetric E-Tongue for the Detection of Ammonia and Putrescine in Beef Products. Sens. Actuators B Chem. 2016, 234, 371–379. [Google Scholar] [CrossRef]
- Vapnik, V.N. An Overview of Statistical Learning Theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.-J.; Lin, C.-H.; Huang, X.-J. Analyzing the Anodic Stripping Square Wave Voltammetry of Heavy Metal Ions via Machine Learning: Information beyond a Single Voltammetric Peak. J. Electroanal. Chem. 2020, 872, 113934. [Google Scholar] [CrossRef]
- Mahmodi, K.; Mostafaei, M.; Mirzaee-Ghaleh, E. Detection and Classification of Diesel-Biodiesel Blends by LDA, QDA and SVM Approaches Using an Electronic Nose. Fuel 2019, 258, 116114. [Google Scholar] [CrossRef]
- Liu, N.; Liang, Y.; Bin, J.; Zhang, Z.; Huang, J.; Shu, R.; Yang, K. Classification of Green and Black Teas by PCA and SVM Analysis of Cyclic Voltammetric Signals from Metallic Oxide-Modified Electrode. Food Anal. Methods 2014, 7, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Garcia-Cabezon, C.; Gobbi Teixeira, G.; Dias, L.G.; Salvo-Comino, C.; García-Hernandez, C.; Rodriguez-Mendez, M.L.; Martin-Pedrosa, F. Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. Sensors 2020, 20, 4176. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. A Screen-Printed Voltammetric Electronic Tongue for the Analysis of Complex Mixtures of Metal Ions. Sens. Actuators B Chem. 2017, 250, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Aguayo, D.; Cetó, X.; De Wael, K.; del Valle, M. Resolution of Opiate Illicit Drugs Signals in the Presence of Some Cutting Agents with Use of a Voltammetric Sensor Array and Machine Learning Strategies. Sens. Actuators B Chem. 2022, 357, 131345. [Google Scholar] [CrossRef]
- Zou, J.; Han, Y.; So, S.-S. Overview of Artificial Neural Networks. In Artificial Neural Networks: Methods and Applications; Livingstone, D.J., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2009; pp. 14–22. ISBN 978-1-60327-101-1. [Google Scholar]
- Herrera-Chacon, A.; González-Calabuig, A.; Campos, I.; del Valle, M. Bioelectronic Tongue Using MIP Sensors for the Resolution of Volatile Phenolic Compounds. Sens. Actuators B Chem. 2018, 258, 665–671. [Google Scholar] [CrossRef]
- Yaoyu, Z.; Lin, T.; Guangming, Z.; Yi, Z.; Zhen, L.; Yuanyuan, L.; Jun, C.; Guide, Y.; Lu, Z.; Sheng, Z. Simultaneous Determination of Hydroquinone and Catechol in Compost Bioremediation Using a Tyrosinase Biosensor and Artificial Neural Networks. Anal. Methods 2014, 6, 2371–2378. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. In IEEE Transactions on Neural Networks and Learning Systems; IEEE: Piscataway, NJ, USA, 2021; pp. 1–21. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Yang, Z.; Miao, N.; Zhang, X.; Li, Q.; Wang, Z.; Li, C.; Sun, X.; Lan, Y. Employment of an Electronic Tongue Combined with Deep Learning and Transfer Learning for Discriminating the Storage Time of Pu-Erh Tea. Food Control 2021, 121, 107608. [Google Scholar] [CrossRef]
- Zhong, Y.H.; Zhang, S.; He, R.; Zhang, J.; Zhou, Z.; Cheng, X.; Huang, G. A Convolutional Neural Network Based Auto Features Extraction Method for Tea Classification with Electronic Tongue. Appl. Sci. 2019, 9, 2518. [Google Scholar] [CrossRef] [Green Version]
- Tauler, R. Multivariate Data Analysis-In Pactice. An Introduction to Multivariate Data Analysis and Experimental Design. J. Chemom. 2002, 16, 117–118. [Google Scholar] [CrossRef]
- Legin, A.; Kirsanov, D.; del Valle, M. Avoiding Nonsense in Electronic Taste Sensing. TrAC Trends Anal. Chem. 2019, 121, 115675. [Google Scholar] [CrossRef]
- Belmonte, I.; White, R.J. 3-D Printed Microfluidics for Rapid Prototyping and Testing of Electrochemical, Aptamer-Based Sensor Devices under Flow Conditions. Anal. Chim. Acta 2022, 1192, 339377. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Liu, Z.; Liu, L.; Low, S.S.; Lu, Y.; Yu, X.; Zhu, L.; Li, C.; Liu, Q. Smartphone-Based Integrated Voltammetry System for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid with Graphene and Gold Nanoparticles Modified Screen-Printed Electrodes. Biosens. Bioelectron. 2018, 119, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Massah, J.; Asefpour Vakilian, K. An Intelligent Portable Biosensor for Fast and Accurate Nitrate Determination Using Cyclic Voltammetry. Biosyst. Eng. 2019, 177, 49–58. [Google Scholar] [CrossRef]
Analyte | Electrode | Method | Analytical Parameters | Ref. |
---|---|---|---|---|
LRP gene | Three-dimensional nanoporous gold electrode | SWV, DPV | LOD: 6.0 × 10−14 M Linear range: 2.0 × 10−13–7.5 × 10−9 M | [28] |
CYFRA-21-1 | APTES/nYZR/ITO electrode | DPV | LOD: 7.2 pg/mL Linear range: 0.01–50 ng/mL | [29] |
miRNA-21 | Reduced graphene oxide/gold composite-modified electrode | DPV | LOD: 1.0 pM Linear range: 1 × 10−14–1 × 10−4 M | [30] |
Dopamine; Serotonin; Glucose | GOx-DHP/Gr-AV modified electrode | CV, DPV, SWV | LOD: 0.13 μM Linear range: 30–800 μM LOD: 0.39 μM Linear range: 6.0–100 μM LOD: 0.21 μM Linear range: 1.0–10 μM | [31] |
Vitamin D2 | BSA/Ab-Vd2/CD-CH/ITO bioelectrode | DPV | LOD: 1.35 ng/mL Linear range: 10–50 ng/mL | [32] |
Promazine | Graphene modified carbon-paste electrode | SWV | LOD: 8.0 nM Linear range: 0.1–8 μM | [33] |
Theophylline | CHL-GO/C electrode | SWV | LOD: 4.45 × 10−9 M Linear range: 3.0 × 10−8–5.0 × 10−4 M | [34] |
Acetaminophen | Diglycolic acid modified glassy carbon electrode | CV | LOD: 6.7 × 10−9 M Linear range: 2.0 × 10−8–5.0 × 10−4 M | [35] |
Osteopontin | RNA aptamer-immobilized gold electrode | CV | LOD: 3.7 nM Linear range: 25–200 nM | [36] |
Cardiac troponin I | Au SPE/Au nanodumbbells/Apt | DPV | LOD: 0.08 ng/mL Linear range: 0.05–500 ng/mL | [37] |
Troponin I | Au disc/Triangular icicle-like Au | DPV | LOD: 0.0009 ng/mL Linear range: 0.01–5.0 ng/mL | [38] |
L-Try | PT-ZnO/glassy carbon | SWV | LOD: 8.5 nM Linear range: 1.0 × 10−4–1.0 mM | [39] |
Phenol | Tyr-AuNPs/BDD | SWV | LOD: 0.07 μM Linear range: 0.10–11.0 μM | [40] |
5-enolpyruvylshikimate-3-phosphate synthase isolated | Dual-functionalized AuNP nanoprobes | DPV | LOD: 0.05 ng/mL Linear range: 0.1–10.0 ng/mL | [41] |
Methyl salicylate | AOD-HRP/CNT glassy-carbon electrode | CV | LOD: 0.98 μM Linear range: 0–0.1 mM | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Xu, Y.; Liu, S.; Yu, S.; Yu, Z.; Low, S.S. Application and Progress of Chemometrics in Voltammetric Biosensing. Biosensors 2022, 12, 494. https://doi.org/10.3390/bios12070494
Liu J, Xu Y, Liu S, Yu S, Yu Z, Low SS. Application and Progress of Chemometrics in Voltammetric Biosensing. Biosensors. 2022; 12(7):494. https://doi.org/10.3390/bios12070494
Chicago/Turabian StyleLiu, Jingjing, Yifei Xu, Shikun Liu, Shixin Yu, Zhirun Yu, and Sze Shin Low. 2022. "Application and Progress of Chemometrics in Voltammetric Biosensing" Biosensors 12, no. 7: 494. https://doi.org/10.3390/bios12070494
APA StyleLiu, J., Xu, Y., Liu, S., Yu, S., Yu, Z., & Low, S. S. (2022). Application and Progress of Chemometrics in Voltammetric Biosensing. Biosensors, 12(7), 494. https://doi.org/10.3390/bios12070494