A Novel Gold Calreticulin Nanocomposite Based on Chitosan for Wound Healing in a Diabetic Mice Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Synthesis of Gold Nanoparticles
2.3. Functionalization of Gold Nanoparticles with Calreticulin
2.4. Characterization of Gold Nanoparticles and AuNPs–Calreticulin
2.5. Obtention of Nanocomposite
2.6. Characterization of Nanocomposite Based in AuNPs–Calreticulin
2.7. Determination of Calreticulin Release from Nanocomposite
2.8. Viability Assay for Cells Treated with AuNPs–Calreticulin
2.9. Expression of Proliferating Cell Nuclear Antigen on Cells Treated with AuNPs–Calreticulin
2.10. Colony Formation Assay in Cells Treated with AuNPs-Calreticulin
2.11. Wound Healing Assay in Fibroblast Treated with AuNPs–Calreticulin
2.12. Induction of Diabetes with Streptozotocin (STZ)
2.13. Glucose Tolerance Test in Healthy and Diabetic Mice
2.14. Animal Model of Wound Healing
2.15. Topical Application of Nanocomposite
2.16. Histological Analysis
2.17. Statistical Analysis
3. Results
3.1. Characterization of AuNPs and AuNPs–Calreticulin Nanoparticles
3.2. Characterization of Nanocomposites
3.3. Calreticulin Release from the Nanocomposite
3.4. Viability Assay for Cells Treated with AuNPs–Calreticulin
3.5. Expression of Proliferating Cell Nuclear Antigen in Cells Treated with AuNPs–Calreticulin
3.6. Colony Formation in Cells Treated with AuNPs–Calreticulin
3.7. Wound Healing Assay of Fibroblast In Vitro
3.8. Induction of Diabetes with Streptozotocin
3.9. Mice Treatments with Nanocomposites of AuNPs–Calreticulin
3.10. Histological Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rohan, M. Markets and markets. Available online: https://www.marketsandmarkets.com/PressReleases/wound-care.asp (accessed on 30 December 2017).
- Marston, W.A.; Hanft, J.; Norwood, P.; Pollak, R. The efficacy and safety of dermagraft in improving the healing of chronic diabetic foot ulcers results of a prospective randomized trial. Diabetes Care 2003, 26, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Yandrapalli, S.; Arnow, W.S. Cardiovascular benefits of the newer medications for treating type 2 diabetes mellitus. J. Thorac. Dis. 2017, 9, 2124–2134. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Curiel, I.; Trujillo, V.; Montoya-Rosales, A.; Rincon, K.; Rivas-Calderon, B.; deHaro-Acosta, J.; Marin-Luevano, P.; Lozano-Lopez, D.; Enciso-Moreno, J.A.; Rivas-Santiago, B. 1,25-Dihydroxivitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: AN in vitro model. PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Abredari, H.; Bolourchifard, F.; Rassouli, M.; Nasiri, N.; Taher, M.; Abedi, A. Health locus of control and self-care behaviors in diabetic foot patients. Med. J. Islam Repub. Iran. 2015, 29, 283. [Google Scholar] [PubMed]
- Ochoa-Gonzalez, F.; Cervantes-Villagrana, A.R.; Fernandez-Ruiz, J.C.; Nava-Ramirez, H.; Hernandez-Correa, A.C.; Enciso-Moreno, J.A.; Castañeda-Delgado, E. Metformin induces cell cycle arrest, reduced proliferation, wound healing impairment in vivo and is associated to clinical outcomes in diabetic foot ulcers patients. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Tiwari, P.M.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials 2011, 1, 31–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leu, J.-G.; Chen, S.-A.; Yao, Y.-D.; Tu, C.-S.; Liang, Y.-J. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine NBM 2012, 8, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Regiel-Futyra, A.; Kus-Liskíewicz, M.; Sebastian, V.; Irusta, S.; Arruebo, M.; Stochel, G.; Kyziol, A. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl. Mater. Interfaces 2015, 7, 1087–1099. [Google Scholar] [CrossRef] [PubMed]
- Al Enizi, A.M.; Zagho, M.M.; Elzatahry, A.A. Polymer-Based Electrospun nanofibers for biomedical applications. Nanomaterials 2018, 8, 259. [Google Scholar] [CrossRef]
- Marston, W.; Tang, J.; Kirsner, R.S.; Ennis, W. Wound Healing Society 2015 update on guidelines for venous ulcers. Wound Repair Regen. 2016, 24, 136–144. [Google Scholar] [CrossRef]
- Du, Y.; Luo, X.-L.; Xu, J.-J.; Chen, H.-Y. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry 2007, 70, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.; Bun, N.T.; Ho Wong, J.; Yee Chan, W. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M.; Groenendyk, J.; Szabo, E.; Gold, L.I.; Opas, M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 2009, 417, 651–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, T.P.; Eaglstein, W.H.; Davis, S.C.; Mertz, P. The pig as a model for human wound healing. Wound Repair Regen. 2001, 9, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Gold, I.L.; Rahman, M.; Blechman, K.M.; Greives, M.R.; Churgin, S.; Michaels, J.; Callaghan, M.J.; Cardwell, N.L.; Pollins, A.C.; Michalak, M.; et al. Overview of the role for calreticulin in the enhancement of wound healing through multiples biological effects. J. Invest. Dermatol. Symp. Proc. 2006, 11, 57–65. [Google Scholar] [CrossRef]
- Greives, M.R.; Samra, F.; Pavlides, S.C.; Blechman, K.M.; Naylor, S.M.; Woodrell, C.D.; Cadacio, C.; Levine, J.P.; Bancroft, T.A.; Michalak, M.; et al. Exogenous calreticulin improves diabetic wound healing. Wound Repair Regen. 2012, 20, 715–730. [Google Scholar] [CrossRef] [PubMed]
- Turkevich, J.; Cooper Stevenson, P.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Jeyasekaran, E.; Venkatachalam, S. Synthesis and characterization of chitosan-stabilized gold nanoparticles through a facile and green approach. Gold Bull. 2017, 50, 1–5. [Google Scholar]
- Nanney, L.B.; Woodrell, C.D.; Greives, M.R.; Cardwell, N.L.; Pollins, A.C.; Bancroft, T.A.; Chesser, A.; Michalak, M.; Rahman, M.; Siebert, J.W.; Gold, L.I. Calreticulin enhances porcine wound repair by diverse biological effects. Am. J. Pathol. 2008, 173, 611–630. [Google Scholar] [CrossRef]
- Zárate Triviño, D.G.; Hernández Martínez, S.P.; Bollain y Goytia de la Rosa, J.J.; Franco Molina, M.A.; Elizalde Peña, E.A.; Hernández Villegas, M.I.; Rangel Ochoa, G.A.; Rodríguez Padilla, C. Development of a novel scaffold of chitosan, type IV collagen and integrin α3β1 as alternative scaffold for primary culture of podocytes. Appl. Sci. 2018, 8, 930. [Google Scholar] [CrossRef]
- Franken, N.A.; Rodermond, H.M. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef] [PubMed]
- Rafehi, H.; Orlowski, C.; Georgiadis, G.T.; Ververis, K.; El-Osta, A.; Karagiannis, T.C. Clonogenic Assay: Adherent cells. JOVE 2011, 49, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Yeom, C.-H.; Lee, G.; Park, G.L.; Park, J.-H.; Yu, J.; Park, S.; Yi, S.-Y.; Lee, H.R.; Hong, Y.S.; Yang, J.; Lee, S. High dose concentration administration of ascorbic acid inhibits tumor growth in BALB/C mice implanted with sarcoma 180 cancer cells via the restriction of angiogenesis. J. Transl. Med. 2009, 7, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naraginti, S.; Lakshmi Kumari, P.; Kumar Das, R.; Sivakumar, A.; Hindurao Patil, S.; Vilas Andhalkar, V. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats. Mater. Sci. Eng. C 2016, 62, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, M.; Govindaraju, K.; Mohamed Sadiq, A.; Tamilselvan, V.; Singaravelu, G. Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 116, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Mocan, L.; Matea, C.; Tabaran, F.A.; Mosteanu, O.; Pop, T.; Puia, C.; Agoston-Coldea, L.; Gonciar, D.; Kalman, E.; Zaharie, G.; et al. Selective in vitro photohermal nano-therapy of MRSA infections mediated by IgG conjugated gold nanoparticles. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Villamil Giraldo, A.M.; Lopez Medus, M.; Gonzalez Lebrero, M.; Pagano, R.; Labiola, C.; Landolfo, L.; Delfino, J.; Parodi, A.; Caramelo, J. The struture of calreticulin C-terminal domain is modulated by physiological variotions of calcium concentrations. J. Biol. Chem. 2010, 285, 4544–4553. [Google Scholar] [CrossRef]
- Gold, L.I.; Eggleton, P.; Sweetwyne, M.T.; Van Duyn, L.B.; Greives, M.R.; Naylor, S.M.; Michalack, M.; Murphy-Ulrich, J.E. Calreticulin: NON-endoplasmic reticulum functions in physiology and disease. FASEB J. 2010, 24, 665–683. [Google Scholar] [CrossRef]
- Aktur, O.; Kismet, K.; Yasti, A.C.; Kuru, S.; Duymus, M.E.; Kaya, F.; Caydere, M.; Hucumenoglu, S.; Keskin, D. Collagen/gold nanoparticle nanocomposite: A potential skin wound healing biomaterial. J. Biomater. Appl. 2016, 31, 283–301. [Google Scholar] [CrossRef]
- Zorin, V.; Zorina, A.; Smetanina, N.; Kopnin, P.; Ozerov, I.V.; Leonov, S.; Isaev, A.; Klokov, D.; Osipov, A.N. Diffuse colonies of human skin fibroblast in relation to cellular senescence and proliferation. AGING 2017, 9, 1404–1413. [Google Scholar] [CrossRef]
- Borges, G.Á.; Elias, S.T.; da Silva, S.M.; Magalhães, P.O.; Macedo, S.B.; Ribeiro, A.P.; Guerra, E.N. In vitro evaluation of wound healing and antimicrobial potential of ozone therapy. J. Craniomaxillofac Surg. 2017, 45, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Tecilazich, F.; Dinh, T.L.; Veves, A. Emerging drugs for the treatment of diabetic ulcers. Expert Opin. Emerg. Drugs 2013, 18, 207–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.; Ye, H.; Shang, S.; Xiong, Q.; Yu, K.; Li, Q.; Xiao, Y.; Dai, F.; Lan, G. Novel wound dressing with chitosan gold nanoparticles capped with a small molecule for effective treatment of multiantibiotic-resistant bacterial infections. Nanotechnology 2018, 29, 425603. [Google Scholar] [CrossRef] [PubMed]
Nanoparticles | Average Size (nm) | Polydispersity Index (PDI) | Z Potential (mV) |
---|---|---|---|
AuNPs | 5.7 ± 1.07 | 0.3 | +23.9 ± 0.002 |
AuNPs-calreticulin | 92.39 ± 0.94 | 0.5 | +33.6 ± 0.004 |
Wavenumber (cm−1) | Functional Group |
---|---|
3215 | NH2 |
1664 | C=O |
1574 | NH2 |
1336 | C–N |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández Martínez, S.P.; Rivera González, T.I.; Franco Molina, M.A.; Bollain y Goytia, J.J.; Martínez Sanmiguel, J.J.; Zárate Triviño, D.G.; Rodríguez Padilla, C. A Novel Gold Calreticulin Nanocomposite Based on Chitosan for Wound Healing in a Diabetic Mice Model. Nanomaterials 2019, 9, 75. https://doi.org/10.3390/nano9010075
Hernández Martínez SP, Rivera González TI, Franco Molina MA, Bollain y Goytia JJ, Martínez Sanmiguel JJ, Zárate Triviño DG, Rodríguez Padilla C. A Novel Gold Calreticulin Nanocomposite Based on Chitosan for Wound Healing in a Diabetic Mice Model. Nanomaterials. 2019; 9(1):75. https://doi.org/10.3390/nano9010075
Chicago/Turabian StyleHernández Martínez, Sara Paola, Teodoro Iván Rivera González, Moisés Armides Franco Molina, Juan José Bollain y Goytia, Juan José Martínez Sanmiguel, Diana Ginette Zárate Triviño, and Cristina Rodríguez Padilla. 2019. "A Novel Gold Calreticulin Nanocomposite Based on Chitosan for Wound Healing in a Diabetic Mice Model" Nanomaterials 9, no. 1: 75. https://doi.org/10.3390/nano9010075
APA StyleHernández Martínez, S. P., Rivera González, T. I., Franco Molina, M. A., Bollain y Goytia, J. J., Martínez Sanmiguel, J. J., Zárate Triviño, D. G., & Rodríguez Padilla, C. (2019). A Novel Gold Calreticulin Nanocomposite Based on Chitosan for Wound Healing in a Diabetic Mice Model. Nanomaterials, 9(1), 75. https://doi.org/10.3390/nano9010075