Comparison of Fabrication Methods of Metal-Organic Framework Optical Thin Films
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of MOF Optical Thin Film
2.3. Characterization
3. Results and Discussion
3.1. Appearance and Reflectivity
3.2. Surface Micro-Morphology
3.3. Surface Roughness
3.4. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sindoro, M.; Yanai, N.; Jee, A.-Y.; Granick, S. Colloidal-sized metal-organic frameworks: Synthesis and applications. Acc. Chem. Res. 2013, 47, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.J.; Dincă, M.; Long, J.R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhu, Y.; Huo, Y.; Luo, Y.; Zhang, L.; Wan, Y.; Nan, B.; Cao, L.; Wang, Z.; Li, M. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 2017, 60, 654–663. [Google Scholar] [CrossRef]
- Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172. [Google Scholar] [CrossRef] [PubMed]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2011, 112, 1105–1125. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Hupp, J.T. Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 2010, 132, 7832–7833. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Liu, Y.; Xu, H.; Li, S.; Zhang, W.; Cui, P.; Huo, F. Self-assembled metal-organic frameworks crystals for chemical vapor sensing. Small 2014, 10, 3672–3676. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Tao, C.; Liu, H.; Zou, X.; Zhu, H.; Wang, J. Fabrication of an NH2-MIL-88B photonic film for naked-eye sensing of organic vapors. J. Mater. Chem. A 2014, 2, 14222–14227. [Google Scholar] [CrossRef]
- Serre, C.; Mellot-Draznieks, C.; Surblé, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 2007, 315, 1828–1831. [Google Scholar] [CrossRef] [PubMed]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Nat. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Xiong, Q. A large scale perfect absorber and optical switch based on phase change material (Ge2Sb2Te5) thin film. Sci. China Mater. 2016, 59, 1–8. [Google Scholar] [CrossRef]
- Epstein, L.I. The design of optical filters. J. Opt. Soc. Am. 1952, 42, 806–808. [Google Scholar] [CrossRef]
- Bétard, A.; Fischer, R.A. Metal-organic framework thin films: From fundamentals to applications. Chem. Rev. 2012, 112, 1055–1083. [Google Scholar] [CrossRef] [PubMed]
- Zacher, D.; Shekhah, O.; Wöll, C.; Fischer, R.A. Thin films of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1418–1429. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, P.; Serre, C.; Grosso, D.; Boissiere, C.; Perruchas, S.; Sanchez, C.; Férey, G. Colloidal route for preparing optical thin films of nanoporous metal–organic frameworks. Adv. Mater. 2009, 21, 1931–1935. [Google Scholar] [CrossRef]
- Demessence, A.; Horcajada, P.; Serre, C.; Boissière, C.; Grosso, D.; Sanchez, C.; Férey, G. Elaboration and properties of hierarchically structured optical thin films of MIL-101 (Cr). Chem. Commun. 2009, 46, 7149–7151. [Google Scholar] [CrossRef] [PubMed]
- García Márquez, A.; Demessence, A.; Platero-Prats, A.E.; Heurtaux, D.; Horcajada, P.; Serre, C.; Chang, J.S.; Férey, G.; de la Peña-O’Shea, V.; Boissière, C. Green microwave synthesis of MIL-100 (Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur. J. Inorg. Chem. 2012, 2012, 5165–5174. [Google Scholar] [CrossRef]
- Redel, E.; Wang, Z.; Walheim, S.; Liu, J.; Gliemann, H.; Wöll, C. On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films. Appl. Phys. Lett. 2013, 103, 091903. [Google Scholar] [CrossRef]
- Yin, W.; Tao, C.; Zou, X.; Wang, F.; Qu, T.; Wang, J. The tuning of optical properties of nanoscale mofs-based thin film through post-modification. Nanomaterials 2017, 7, 242. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Tao, C.; Wang, F.; Huang, J.; Qu, T.; Wang, J. Tuning optical properties of mof-based thin films by changing the ligands of MOFs. Sci. China Mater. 2018, 61, 391–400. [Google Scholar] [CrossRef]
- Ranft, A.; Betzler, S.B.; Haase, F.; Lotsch, B.V. Additive-mediated size control of MOF nanoparticles. CrystEngComm 2013, 15, 9296–9300. [Google Scholar] [CrossRef]
- Hu, Z.; Tao, C.; Wang, F.; Zou, X.; Wang, J. Flexible metal-organic framework-based one-dimensional photonic crystals. J. Mater. Chem. C 2015, 3, 211–216. [Google Scholar] [CrossRef]
- Kandiah, M.; Nilsen, M.H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E.A.; Bonino, F.; Lillerud, K.P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640. [Google Scholar] [CrossRef]
- Choi, K.M.; Jeong, H.M.; Park, J.H.; Zhang, Y.-B.; Kang, J.K.; Yaghi, O.M. Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 2014, 8, 7451–7457. [Google Scholar] [CrossRef] [PubMed]
- Kickelbick, G.; Schubert, U. Oxozirconium methacrylate clusters: Zr6(OH)4O4(OMC)12 and Zr4O2(OMC)12 (OMC = methacrylate). Chem. Ber. 1997, 130, 473–478. [Google Scholar] [CrossRef]
- Užarević, K.; Wang, T.C.; Moon, S.-Y.; Fidelli, A.M.; Hupp, J.T.; Farha, O.K.; Friščić, T. Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks. Chem. Commun. 2016, 52, 2133–2136. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Sihvola, A. Mixing rules with complex dielectric coefficients. Subsurf. Sens. Technol. Appl. 2000, 1, 393–415. [Google Scholar] [CrossRef]
Samples | Ra(nm) | Rq(nm) |
---|---|---|
OTF-SP | 8.7 ± 1.3 | 12.1 ± 1.9 |
OTF-DP-1 | 7.6 ± 0.7 | 9.7 ± 1.0 |
OTF-DP-3 | 13.8 ± 5.1 | 17.7 ± 6.4 |
OTF-DP-5 | 25.5 ± 4.8 | 42.2 ± 16.8 |
OTF-SA-1 | 15.6 ± 2.0 | 19.5 ± 2.3 |
OTF-SA-2 | 15.2 ± 1.9 | 21.5 ± 0.7 |
OTF-SA-3 | 10.9 ± 2.5 | 19.2 ± 9.8 |
OTF-DG | 40.3 ± 6.2 | 56.3 ± 9.6 |
OTF-LBL | 14.2 ± 1.4 | 19.3 ± 7.9 |
Samples | nave | n900 | Vvoid (%) |
---|---|---|---|
OTF-SP | 1.208 ± 0.024 | 1.2022 | 25.19 |
OTF-DP-1 | 1.110 ± 0.016 | 1.1095 | 32.11 |
OTF-DP-3 | 1.178 ± 0.012 | 1.1616 | 27.35 |
OTF-DP-5 | 1.118 ± 0.015 | 1.1182 | 31.51 |
OTF-SA-1 | 1.233 ± 0.009 | 1.2308 | 23.32 |
OTF-SA-2 | 1.273 ± 0.015 | 1.2731 | 20.25 |
OTF-SA-3 | 1.188 ± 0.012 | 1.1760 | 26.64 |
OTF-LBL | 1.512 ± 0.053 | 1.4955 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Tao, C.-a.; Chen, R.; Sheng, L.; Wang, J. Comparison of Fabrication Methods of Metal-Organic Framework Optical Thin Films. Nanomaterials 2018, 8, 676. https://doi.org/10.3390/nano8090676
Huang Y, Tao C-a, Chen R, Sheng L, Wang J. Comparison of Fabrication Methods of Metal-Organic Framework Optical Thin Films. Nanomaterials. 2018; 8(9):676. https://doi.org/10.3390/nano8090676
Chicago/Turabian StyleHuang, Yan, Cheng-an Tao, Rui Chen, Liping Sheng, and Jianfang Wang. 2018. "Comparison of Fabrication Methods of Metal-Organic Framework Optical Thin Films" Nanomaterials 8, no. 9: 676. https://doi.org/10.3390/nano8090676
APA StyleHuang, Y., Tao, C.-a., Chen, R., Sheng, L., & Wang, J. (2018). Comparison of Fabrication Methods of Metal-Organic Framework Optical Thin Films. Nanomaterials, 8(9), 676. https://doi.org/10.3390/nano8090676