Phonon Confinement Induced Non-Concomitant Near-Infrared Emission along a Single ZnO Nanowire: Spatial Evolution Study of Phononic and Photonic Properties
Abstract
1. Introduction
2. Results
2.1. Sample Characterization and TEM Analysis
2.2. High Spatial Resolution of Energy Dispersive Spectroscopy Mapping
2.3. Spatial Scanning Confocal Raman Measurements along a Single ZnO NW
2.4. NIR Emission Mapping along a ZnO NW
2.5. Linear Chain Modeling and the Phonon Peak of E2H Mode Mapping
3. Discussion
4. Method
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Janotti, A.; Van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef]
- Morkoç, H.; Özgür, Ü. Zinc Oxide: Fundamentals, Materials, and Device Technology, 1st ed.; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Shih, H.Y.; Chen, Y.T.; Huang, N.H.; Wei, C.M.; Chen, Y.F. Size-dependent photo elastic effect in ZnO nanorods. Appl. Phys. Lett. 2009, 94, 021908. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292, 1897–1899. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, F.; Villani, M.; Catellani, A.; Calzolari, A.; Cicero, G.; Calestani, D.; Calestani, G.; Zappettini, A.; Dierre, B.; Sekiguchi, T.; et al. Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Sci. Rep. 2014, 4, 5188. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, S.S.; Gandhi, A.C.; Pandit, S.D.; Pant, J.; Chan, T.-S.; Cheng, C.-L.; Ma, Y.-R.; Wu, S.Y. Oxygen induced strained ZnO nanoparticles: An investigation of Raman scattering and visible photoluminescence. J. Mater. Chem. C 2014, 2, 7264–7274. [Google Scholar] [CrossRef]
- Shih, P.-H.; Cheng, C.-L.; Ma, Y.-R.; Wu, S.Y. Short range correlation length study in a single ZnO nanowire and its impact on phonon confinement. Appl. Phys. Lett. 2016, 108, 113101. [Google Scholar] [CrossRef]
- Geng, C.; Jiang, Y.; Meng, X.; Zapien, J.A.; Lee, C.S.; Lifshitz, Y.; Lee, S.T. Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv. Funct. Mater. 2004, 14, 589–594. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, S.M.; Wang, H.W.; Du, Z.L. Raman scattering and photoluminescence of Fe-doped ZnO nanocantilever arrays. Chin. Sci. Bull. 2008, 53, 1639–1643. [Google Scholar]
- Ashkenov, N.; Mbenkum, B.N.; Bundesmann, C.; Riede, V.; Lorenz, M.; Spemann, D.; Kaidashev, E.M.; Kasic, A.; Schubert, M.; Grundmann, M.; et al. Infrared dielectric functions and phonon modes of high-quality ZnO films. J. Appl. Phys. 2003, 93, 126–133. [Google Scholar] [CrossRef]
- Scott, J.F. UV Resonant Raman Scattering in ZnO. Phys. Rev. B 1970, 2, 1209. [Google Scholar] [CrossRef]
- Bǿrseth, T.M.; Svensson, B.G.; Kuznetsov, A.Y.; Klason, P.; Zhao, Q.X.; Willander, M. Identification of oxygen and zinc vacancy optical signals in ZnO. Appl. Phys. Lett. 2006, 89, 262112. [Google Scholar] [CrossRef]
- Vanheusden, K.; Seager, C.H.; Warren, W.L.; Tallant, D.R.; Voigt, J.A. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 1995, 68, 403–405. [Google Scholar] [CrossRef]
- Wu, X.L.; Siu, G.G.; Fu, C.L.; Ong, H.C. Photoluminescence and cathode luminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 2001, 78, 2285–2287. [Google Scholar] [CrossRef]
- Lin, B.; Fu, Z.; Anhui, H.; Tsai, C.L. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 2001, 79, 943–945. [Google Scholar] [CrossRef]
- Shalish, I.; Temkin, H.; Narayanamurti, V. Size-dependent surface luminescence in ZnO nanowires. Phys. Rev. B 2004, 69, 245401. [Google Scholar] [CrossRef]
- Hui, K.C.; Ong, H.C.; Lee, P.F.; Dai, J.Y. Role of recombination pathway competition in spatially resolved cathodoluminescence spectroscopy. Appl. Phys. Lett. 2005, 86, 152116. [Google Scholar] [CrossRef]
- Richters, J.-P.; Voss, T.; Wischmeier, L.; Rückmann, I.; Gutowski, J. Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires. Appl. Phys. Lett. 2008, 92, 011103. [Google Scholar] [CrossRef]
- Lauer, R.B. The IR photoluminescence emission band in zinc oxide. J. Phys. Chem. Solids 1973, 34, 249–253. [Google Scholar] [CrossRef]
- Lehmann, W. Zinc Oxide and Zinc-Cadmium Oxide Phosphors. J. Electrochem. Soc. 1968, 115, 538–540. [Google Scholar] [CrossRef]
- Gorelkinskii, Y.V.; Watkins, G.D. Defects produced in ZnO by 2.5-MeV electron irradiation at 4.2 K: Study by optical detection of electron paramagnetic resonance. Phys. Rev. B 2004, 69, 115212. [Google Scholar] [CrossRef]
- Dong, Y.; Tuomisto, F.; Svensson, B.G.; Kuznetsov, A.Y.; Brillson, L.J. Vacancy defect and defect cluster energetics in ion-implanted ZnO. Phys. Rev. B 2010, 81, 081201. [Google Scholar] [CrossRef]
- Shih, P.-H.; Hung, H.-J.; Ma, Y.-R.; Wu, S.Y. Tuning the dimensionality of ZnO nanowires through thermal treatment: An investigation of growth mechanism. Nanoscale Res. Lett. 2012, 7, 354. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.; Wu, S.Y. Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis. Nanomaterials 2017, 7, 188. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-L.; Ma, Y.-R.; Chou, M.H.; Huang, C.Y.; Yeh, V.; Wu, S.Y. Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire. Nanotechnology 2007, 18, 245604. [Google Scholar] [CrossRef]
- Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B.; Callahan, M.J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 165202. [Google Scholar] [CrossRef]
- Gupta, S.K.; Desai, R.; Jha, P.K.; Sahoo, S.; Kirin, D. Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence. J. Raman Spectrosc. 2010, 41, 350–355. [Google Scholar] [CrossRef]
- Yang, L.-L.; Yang, J.-H.; Wang, D.-D.; Zhang, Y.-J.; Wang, Y.-X.; Liu, H.-L.; Fan, H.-G.; Lang, J.-H. Photoluminescence and Raman analysis of ZnO nanowires deposited on Si(100) via vapor-liquid-solid process. Physica E 2008, 40, 920–923. [Google Scholar] [CrossRef]
- Zeng, J.N.; Low, J.K.; Ren, Z.M.; Liew, T.; Lu, Y.F. Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl. Surf. Sci. 2012, 197–198, 362–367. [Google Scholar] [CrossRef]
- Bratos, S.; Marechal, E. Raman Study of Liquids. I. Theory of the Raman Spectra of Diatomic Molecules in Inert Solutions. Phys. Rev. A 1971, 4, 1078. [Google Scholar] [CrossRef]
- Bartoli, F.J.; Litovitz, T.A. Analysis of Orientational Broadening of Raman Line Shapes. J. Chem. Phys. 1972, 56, 404–412. [Google Scholar] [CrossRef]
- Song, J.; Kulinich, S.A.; Yan, J.; Zhigang, L.; He, J.; Kan, C.; Zeng, H. Field Emitters: Epitaxial ZnO Nanowire-on-Nanoplate Structures as Efficient and Transferable Field Emitters. Adv. Mater. 2013, 25, 5678. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, A.; Ji, X.; Zhu, Y.; Gui, X.; Huang, F.; Tang, Z. Growth of vertically aligned ZnO nanowire arrays on ZnO single crystals. Mater. Lett. 2015, 154, 40–43. [Google Scholar] [CrossRef]
- Kosacki, I.; Suzuki, T.; Anderson, H.U.; Colomban, P. Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics 2002, 149, 99–105. [Google Scholar]
- Yoshikawa, M.; Mori, Y.; Obata, H.; Maegawa, M.; Katagiri, G.; Ishida, H.; Ishitani, A. Raman scattering from nanometer sized diamond. Appl. Phys. Lett. 1995, 67, 694–696. [Google Scholar] [CrossRef]
- Xu, C.Y.; Zhang, P.X.; Yan, L. Blue shift of Raman peak from coated TiO2 nanoparticles. J. Raman Spectrosc. 2001, 32, 862–865. [Google Scholar] [CrossRef]
- Fukata, N.; Oshima, T.; Murakami, K.; Kizuka, T.; Tsurui, T.; Ito, S. Phonon confinement effect of silicon nanowires synthesized by laser ablation. Appl. Phys. Lett. 2005, 86, 213112. [Google Scholar] [CrossRef]
- Selim, F.A.; Weber, M.H.; Solodovnikov, D.; Lynn, K.G. Nature of Native Defects in ZnO. Phys. Rev. Lett. 2007, 99, 085502. [Google Scholar] [CrossRef] [PubMed]
- Tu, N.; Tuan, N.T.; Nguyen, V.; Cuong, N.D.; Kien, N.D.T.; Huy, P.T.; Nguyen, V.; Nguyen, D.H. Near-infrared emission from ZnO nanorods grown by thermal evaporation. J. Lumin. 2014, 156, 199–204. [Google Scholar]
- Janotti, A.; Van de Walle, C.G. Native point defects in ZnO. Phys. Rev. B 2007, 76, 165202. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Y.; Zhang, Y.; Kim, E.J.; Hahn, S.H.; Seong, S.G. Near-infrared luminescence from ZnO. Appl. Phys. Lett. 2012, 100, 101906. [Google Scholar] [CrossRef]
- Biroju, R.K.; Giri, P.K. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation. J. Appl. Phys. 2005, 122, 044301. [Google Scholar] [CrossRef]
- Al-Hilli, S.; Willander, M. The pH Response and Sensing Mechanism of n-Type ZnO/Electrolyte Interfaces. Sensors 2009, 9, 7445–7480. [Google Scholar] [CrossRef] [PubMed]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Faraci, G.; Gibilisco, S.; Russo, P.; Pennisi, A.R.; La Rosa, S. Modified Raman confinement model for Si nanocrystals. Phys. Rev. B 2006, 73, 033307. [Google Scholar] [CrossRef]
- Wang, J.B.; Zhong, H.M.; Li, Z.F.; Lu, W. Raman study for E2 phonon of ZnO in Zn1−xMnxO nanoparticles. J. Appl. Phys. 2005, 97, 086105. [Google Scholar] [CrossRef]
- Wang, R.-P.; Zhou, G.-W.; Liu, Y.-L.; Pan, S.-H.; Zhang, H.-Z.; Yu, D.-P.; Zhang, Z. Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects. Phys. Rev. B 2000, 61, 16827. [Google Scholar] [CrossRef]
- Zhu, K.-R.; Zhang, M.-S.; Chen, Q.; Yin, Z. Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys. Lett. A 2005, 340, 220–227. [Google Scholar] [CrossRef]
- Begum, N.; Bhatti, A.S.; Jabeen, F.; Rubini, S.; Martell, F. Phonon Confinement Effect in III-V Nanowires. In Nanowires; Prete, P., Ed.; InTechOpen: Rijeka, Croatia, 2010. [Google Scholar]
- Bersani, D.; Lottici, P.P.; Ding, X.-Z. Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl. Phys. Lett. 1998, 72, 73–75. [Google Scholar] [CrossRef]
- Rajalakshmi, M.; Arora, A.K.; Bendre, B.S.; Mahamuni, S. Optical phonon confinement in zinc oxide nanoparticles. J. Appl. Phys. 2000, 87, 2445–2448. [Google Scholar] [CrossRef]
- Yang, M.; Huang, D.; Hao, P.; Zhang, F.; Hou, X.; Wang, X. Study of the Raman peak shift and the linewidth of light-emitting porous silicon. J. Appl. Phys. 1994, 75, 651–653. [Google Scholar] [CrossRef]
- Akhilesh, K.; Arora, M.; Rajalakshmi, T.R. Ravindran, Phonon Confinement in Nanostructured Materials. In Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scientific Publishers: Valencia, CA, USA, 2004; Volume 8. [Google Scholar]
- Arora, A.K.; Rajalakshmi, M.; Ravindran, T.R.; Sivasubramanian, V. Raman spectroscopy of optical phonon confinement in nanostructured materials. J. Raman Spectrosc. 2007, 38, 604–617. [Google Scholar] [CrossRef]
- Adu, K.W.; Xiong, Q.; Gutierrez, H.R.; Chen, G.; Eklund, P.C. Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl. Phys. A 2006, 85, 287–297. [Google Scholar] [CrossRef]
- Venugopal, R.; Lin, P.-I.; Liu, C.-C.; Chen, Y.T. Surface-Enhanced Raman Scattering and Polarized Photoluminescence from Catalytically Grown CdSe Nanobelts and Sheets. J. Am. Chem. Soc. 2005, 127, 11262–11268. [Google Scholar] [CrossRef] [PubMed]
- Barriga-Castro, E.D.; García, J.; Mendoza-Resendez, R.; Pridab, V.M.; Luna, C. Pseudo-monocrystalline properties of cylindrical nanowires confinedly grown by electrodeposition in nanoporous alumina templates. RSC Adv. 2017, 7, 13817–13826. [Google Scholar] [CrossRef]
Spatial Position (μm) | E2H Mode (cm−1) | E1-LO Mode (cm−1) | ||
---|---|---|---|---|
Position | Width | Position | Width | |
0.00 | 438.1 ± 0.56 | 29.3 | 608.1 ± 0.54 | 45.4 |
0.50 | 438.2 ± 0.36 | 26.3 | 606.4 ± 0.80 | 44.7 |
0.68 | 437.5 ± 0.47 | 23.9 | 607.2 ± 0.62 | 40.4 |
1.20 | 436.8 ± 0.29 | 24.0 | 606.5 ± 1.11 | 51.8 |
1.52 | 436.6 ± 0.27 | 20.9 | 606.8 ± 1.27 | 46.7 |
1.97 | 436.6 ± 0.35 | 24.6 | 606.9 ± 1.31 | 44.9 |
2.30 | 436.7 ± 0.35 | 22.9 | 602.5 ± 1.76 | 63.1 |
2.71 | 437.3 ± 0.45 | 19.8 | 606.5 ± 2.59 | 55.1 |
3.12 | 436.8 ± 0.57 | 30.0 | 606.5 ± 2.36 | 50.6 |
3.45 | 436.8 ± 0.51 | 22.0 | 606.5 ± 2.83 | 44.7 |
3.83 | 436.8 ± 0.78 | 29.3 | 605.2 ± 3.54 | 53.7 |
4.13 | 437.5 ± 0.64 | 21.6 | - | - |
4.43 | 436.1 ± 0.77 | 21.4 | - | - |
4.76 | 436.3 ± 0.71 | 21.4 | - | - |
5.14 | 436.6 ± 0.59 | 15.8 | - | - |
5.53 | 437.2 ± 0.79 | 22.6 | - | - |
5.74 | 436.7 ± 0.57 | 13.4 | - | - |
6.20 | 434.2 ± 1.51 | 36.5 | - | - |
6.71 | 435.7 ± 1.04 | 20.8 | - | - |
7.03 | 439.6 ± 1.83 | 42.2 | - | - |
7.30 | 435.9 ± 1.69 | 24.6 | - | - |
7.90 | 439.6 ± 3.13 | 43.4 | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, P.-H.; Li, T.-Y.; Yeh, Y.-C.; Wu, S.Y. Phonon Confinement Induced Non-Concomitant Near-Infrared Emission along a Single ZnO Nanowire: Spatial Evolution Study of Phononic and Photonic Properties. Nanomaterials 2017, 7, 353. https://doi.org/10.3390/nano7110353
Shih P-H, Li T-Y, Yeh Y-C, Wu SY. Phonon Confinement Induced Non-Concomitant Near-Infrared Emission along a Single ZnO Nanowire: Spatial Evolution Study of Phononic and Photonic Properties. Nanomaterials. 2017; 7(11):353. https://doi.org/10.3390/nano7110353
Chicago/Turabian StyleShih, Po-Hsun, Tai-Yue Li, Yu-Chen Yeh, and Sheng Yun Wu. 2017. "Phonon Confinement Induced Non-Concomitant Near-Infrared Emission along a Single ZnO Nanowire: Spatial Evolution Study of Phononic and Photonic Properties" Nanomaterials 7, no. 11: 353. https://doi.org/10.3390/nano7110353
APA StyleShih, P.-H., Li, T.-Y., Yeh, Y.-C., & Wu, S. Y. (2017). Phonon Confinement Induced Non-Concomitant Near-Infrared Emission along a Single ZnO Nanowire: Spatial Evolution Study of Phononic and Photonic Properties. Nanomaterials, 7(11), 353. https://doi.org/10.3390/nano7110353