Abstract
This study aimed to prepare water-based nanofluids using Al2O3 nanoparticles with different types of surfactants, and to investigate the colloidal and thermophysical properties of the obtained nanofluids. In this context, water-based Al2O3 nanofluids have been prepared using six surfactants with anionic, cationic, and nonionic characteristics SDS, CTAC, PVP, Tween 80, PVA, and Triton X-100. The electrostatic colloidal stability of the prepared samples has been determined by zeta potential and particle size measurements. To understand the interactions at the molecular level and the stabilities in terms of interaction Gibbs free energy, nanoparticle–surfactant interactions have been modeled using the DFT (Density Functional Theory) method. The overall colloidal stability rankings of nanofluids have been performed using both zeta potential measurements and DFT analysis. Furthermore, the thermophysical properties of nanofluids, which are crucial for industrial applications, have been measured. The results showed that the type of surfactant has a significant effect on the colloidal and thermophysical properties of nanofluids. It has been concluded that Al2O3-SDS and Al2O3-CTAC nanofluids can be used in cooling systems due to their high zeta potential and thermal conductivity, and low viscosity and size.