Optical Nonreciprocity Based on the Four-Wave Mixing Effect in Semiconductor Quantum Dots
Abstract
:1. Introduction
2. Theoretical Model and Equations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khanikaev, A.B.; Alù, A. Nonlinear dynamic reciprocity. Nat. Photon. 2015, 9, 359–361. [Google Scholar] [CrossRef]
- Yu, Z.; Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 2009, 3, 91–94. [Google Scholar] [CrossRef]
- Lodahl, P.; Mahmoodian, S.; Stobbe, S.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Pichler, H.; Zoller, P. Chiral quantum optics. Nature 2017, 541, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chong, Y.; Joannopoulos, J.D.; Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 2009, 461, 772–775. [Google Scholar] [CrossRef]
- Khanikaev, A.B.; Mousavi, S.H.; Shvets, G.; Kivshar, Y.S. One-way extraordinary optical transmission and nonreciprocal spoof plasmons. Phys. Rev. Lett. 2010, 105, 126804. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Hu, J.; Jiang, P.; Kim, D.H.; Dionne, G.F.; Kimerling, L.C.; Ross, C.A. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 2011, 5, 758–762. [Google Scholar] [CrossRef]
- Fan, L.; Wang, J.; Varghese, L.T.; Shen, H.; Niu, B.; Xuan, Y.; Weiner, A.M.; Qi, M. An all-silicon passive optical diode. Science 2012, 335, 447–450. [Google Scholar] [CrossRef]
- Fan, L.; Varghese, L.T.; Wang, J.; Xuan, Y.; Weiner, A.M.; Qi, M. Silicon optical diode with 40 db nonreciprocal transmission. Opt. Lett. 2013, 38, 1259–1261. [Google Scholar] [CrossRef]
- Peng, B.; Özdemir, Ş.K.; Lei, F.; Monifi, F.; Gianfreda, M.; Long, G.L.; Fan, S.; Nori, F.; Bender, C.M.; Yang, L. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 2014, 10, 394–398. [Google Scholar] [CrossRef]
- Chang, L.; Jiang, X.; Hua, S.; Yang, C.; Wen, J.; Jiang, L.; Li, G.; Wang, G.; Xiao, M. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photon. 2014, 8, 524–529. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, J.; Shen, Z.; Cao, J.; Chen, X.; Liang, X.; Wan, W. Optically induced transparency in a micro-cavity. Light. Sci. Appl. 2016, 5, e16072. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Li, X.; Zhou, H.-T.; Xue, J.-J.; Li, R.-N.; Wang, D.; Yang, B.-D.; Zhang, J.-X. Optical reciprocity-nonreciprocity-amplification conversion based on degenerate four-wave mixing. J. Opt. Soc. Am. B 2024, 41, 984–991. [Google Scholar] [CrossRef]
- Xia, K.; Lu, G.; Lin, G.; Cheng, Y.; Niu, Y.; Gong, S.; Twamley, J. Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling. Phys. Rev. A 2014, 90, 043802. [Google Scholar] [CrossRef]
- Scheucher, M.; Hilico, A.; Will, E.; Volz, J.; Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 2016, 354, 1577–1580. [Google Scholar] [CrossRef]
- Hafezi, M.; Rabl, P. Optomechanically induced non-reciprocity in microring resonators. Opt. Express 2012, 20, 7672–7684. [Google Scholar] [CrossRef] [PubMed]
- Ruesink, F.; Miri, M.-A.; Alù, A.; Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 2016, 7, 13662. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Y.-L.; Chen, Y.; Zou, C.-L.; Xiao, Y.-F.; Zou, X.-B.; Sun, F.-W.; Guo, G.-C.; Dong, C.-H. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 2016, 10, 657–661. [Google Scholar] [CrossRef]
- Chen, L.-T.; Qin, L.-G.; Tian, L.-J.; Huang, J.-H.; Zhou, N.-R.; Gong, S.-Q. Effects of cross-Kerr coupling on transmission spectrum of double-cavity optomechanical system. Chin. Phys. B 2024, 33, 064204. [Google Scholar] [CrossRef]
- Wang, D.-W.; Zhou, H.-T.; Guo, M.-J.; Zhang, J.-X.; Evers, J.; Zhu, S.-Y. Optical diode made from a moving photonic crystal. Phys. Rev. Lett. 2013, 110, 093901. [Google Scholar] [CrossRef]
- Ramezani, H.; Jha, P.K.; Wang, Y.; Zhang, X. Nonreciprocal localization of photons. Phys. Rev. Lett. 2018, 120, 043901. [Google Scholar] [CrossRef]
- Horsley, S.; Wu, J.-H.; Artoni, M.; Rocca, G.L. Optical nonreciprocity of cold atom bragg mirrors in motion. Phys. Rev. Lett. 2013, 110, 223602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Hu, Y.; Lin, G.; Niu, Y.; Xia, K.; Gong, J.; Gong, S. Thermal-motion-induced non-reciprocal quantum optical system. Nat. Photon. 2018, 12, 744–748. [Google Scholar] [CrossRef]
- Xia, K.; Nori, F.; Xiao, M. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity. Phys. Rev. Lett. 2018, 121, 203602. [Google Scholar] [CrossRef]
- Fan, S.; Qi, Y.; Lin, G.; Niu, Y.; Gong, S. Broadband optical nonreciprocity in an n-type thermal atomic system. Opt. Commun. 2020, 462, 125343. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, L.; Zhang, S.; Li, X.; Qian, J.; Lin, G.; Niu, Y.; Gong, S. Low insertion loss optical isolator with widely tunable frequency. Opt. Commun. 2021, 489, 126861. [Google Scholar] [CrossRef]
- Liang, C.; Liu, B.; Xu, A.N.; Wen, X.; Lu, C.; Xia, K.; Tey, M.K.; Liu, Y.C.; You, L. Collision-induced broadband optical nonreciprocity. Phys. Rev. Lett. 2020, 125, 123901. [Google Scholar] [CrossRef]
- Song, F.; Wang, Z.; Li, E.; Huang, Z.; Yu, B.; Shi, B. Optical nonreciprocity using four-wave mixing in hot atoms. Appl. Phys. Lett. 2021, 119, 024101. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Niu, Y.; Gong, S. Ultra-strong nonreciprocal amplification with hot atoms. Opt. Commun. 2022, 515, 128195. [Google Scholar] [CrossRef]
- Ge, Y.-R.; Kang, Z.; Ding, C.-L.; Hao, X.-Y.; Jin, R.-B. Efficient optical nonreciprocity based on four-wave mixing effect in semiconductor quantum well. Acta Phys. Sin. 2024, 73, 014201. [Google Scholar] [CrossRef]
- Veisi, M.; Kazemi, S.H.; Mahmoudi, M. Tunneling-induced optical limiting in quantum dot molecules. Sci. Rep. 2020, 10, 16304. [Google Scholar] [CrossRef]
- Hao, X.; Wu, J.; Wang, Y. Steady-state absorption–dispersion properties and four-wave mixing process in a quantum dot nanostructure. J. Opt. Soc. Am. B 2012, 29, 420–428. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubariry, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Singh, M.R.; Meng, Q.; Jiang, X. A Study of Degenerate Four-Wave Mixing and Phase Conjugation in Metallic Nanohybrids. Adv. Opt. Mater. 2024, 12, 2401741. [Google Scholar] [CrossRef]
- Yu, C.; Sun, L.; Zhang, H.; Chen, F. High efficiency four-wave mixing in double asymmetry quantum dots. Optik 2019, 180, 295–301. [Google Scholar] [CrossRef]
- Ramirez, H.Y.; Lin, C.H.; Chao, C.C.; Hsu, Y.; You, W.T.; Huang, S.Y.; Chen, Y.T.; Tseng, H.C.; Chang, W.H.; Lin, S.D.; et al. Optical fine structures of highly quantized InGaAs/GaAs self-assembled quantum dots. Phys. Rev. B 2010, 81, 245324. [Google Scholar] [CrossRef]
- Bayer, M.; Forchel, A. Temperature dependence of the exciton homogeneous linewidth in in 0.60 ga 0.40 as/gaas self-assembled quantum dots. Phys. Rev. B 2002, 65, 041308. [Google Scholar] [CrossRef]
- Yu, C.; Sun, L.; Zhang, H.; Chen, F. Controllable optical bistability in double quantum dot molecule. IET Optoelectron. 2018, 12, 215–219. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Yang, H.; Xu, F.; Qi, Y.; Niu, Y.; Gong, S. Optical Nonreciprocity Based on the Four-Wave Mixing Effect in Semiconductor Quantum Dots. Nanomaterials 2025, 15, 380. https://doi.org/10.3390/nano15050380
Lin Z, Yang H, Xu F, Qi Y, Niu Y, Gong S. Optical Nonreciprocity Based on the Four-Wave Mixing Effect in Semiconductor Quantum Dots. Nanomaterials. 2025; 15(5):380. https://doi.org/10.3390/nano15050380
Chicago/Turabian StyleLin, Zelin, Han Yang, Fei Xu, Yihong Qi, Yueping Niu, and Shangqing Gong. 2025. "Optical Nonreciprocity Based on the Four-Wave Mixing Effect in Semiconductor Quantum Dots" Nanomaterials 15, no. 5: 380. https://doi.org/10.3390/nano15050380
APA StyleLin, Z., Yang, H., Xu, F., Qi, Y., Niu, Y., & Gong, S. (2025). Optical Nonreciprocity Based on the Four-Wave Mixing Effect in Semiconductor Quantum Dots. Nanomaterials, 15(5), 380. https://doi.org/10.3390/nano15050380