Two-Photon Absorption in Twisted Graphene/Hexagonal Boron Nitride Heterojunction Tuned by Vertical Electric Field
Abstract
1. Introduction
2. Theoretical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
G/hBN | graphene/hexagonal boron nitride |
hBN | hexagonal boron nitride |
tG/hBN | twisted graphene/hexagonal boron nitride |
BLG | bilayer graphene |
BZ | Brillouin zone |
tBLG | twist bilayer graphene |
TPA | two-photon absorption |
2D | two-dimensional |
G/SiO2 | graphene/silicon dioxide |
GO | graphene oxide |
TLG | trilayer graphene |
tTLG | twisted trilayer graphene |
tDBLG | twisted double-bilayer graphene |
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Kim, H.; Lee, Y. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Blake, P.; Hill, E.W.; Castro Neto, A.H.; Novoselov, K.S.; Jiang, D.; Yang, R.; Booth, T.J.; Geim, A.K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124. [Google Scholar] [CrossRef]
- Hasan, T.; Sun, Z.; Wang, F. Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 2009, 21, 3874–3899. [Google Scholar] [CrossRef]
- Sun, Z.; Popa, D.; Hasan, T. A stable, wideband tunable, near transform-limited, graphene-mode locked, ultrafast laser. Nano Res. 2010, 3, 653–660. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Hunt, B.; Sanchez-Yamagishi, J.D. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430. [Google Scholar] [CrossRef]
- Kim, K.; Choi, J.Y.; Kim, T. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344. [Google Scholar] [CrossRef]
- Roy, S.; Zhang, X.; Puthirath, A.B. Structure, properties and applications of two-demensional hexagonal boron nitride. Adv. Mater. 2021, 33, 2101589. [Google Scholar] [CrossRef] [PubMed]
- Gannett, W.; Regan, W.; Watanabe, K. Boron nitride substrates for high mobility chemical vapor deposited graphene. Appl. Phys. Lett. 2011, 5, 722–726. [Google Scholar] [CrossRef]
- Wang, J.; Cao, S.; Sun, P. Optical advantages of graphene on the boron nitride in visible and SW-NIR regions. RSC Adv. 2016, 6, 111345–111349. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Z.; Li, Z. Theoretical design of an MoxW1-XS2/graphene(x = 0.25/0.75) heterojunction with adjustable band gap: Potential candidate materials for the next generation of optoelectronic devices. ChemPhysChem 2023, 24, e202300095. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.Q.; Feng, X.B.; Liu, Y.K. Rashba spin-orbit coupling enhanced two-photo absorption and its polarization dependence in monolayer black phosphorous. Opt. Express 2020, 28, 9089–9098. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, J.; Ren, B. Tuning of mid-infrared absorption through photon-plasmon-polariton hybridization in a graphene/hbn/graphene nanodisk array. Opt. Express 2021, 29, 2288–2298. [Google Scholar] [CrossRef] [PubMed]
- Hajian, H.; Ghobadi, A.; Butun, B. Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial. Opt. Express 2018, 26, 16940–16954. [Google Scholar] [CrossRef]
- He, G.S.; Yong, K.T.; Zheng, Q.D. Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range. Opt. Express 2007, 15, 12818–12833. [Google Scholar] [CrossRef]
- Jorio, A. Twistronics and the small-angle magic. Nat. Mater. 2022, 21, 844–845. [Google Scholar] [CrossRef]
- Rothstein, A.; Schattauer, C.; Dolleman, R.J. Band gap formation in commensurate twisted bilayer graphene/hBN moirè lattice. Phys. Rev. B 2024, 109, 155139. [Google Scholar] [CrossRef]
- Liu, Z. Theoretical Study on Electronic Properties of Graphene Moirè Superlattice, 3rd ed.; University of Science and Technology of China: Hefei, China, 2023; pp. 32–49. [Google Scholar]
- Wang, S.; Crowther, J.; Kageshima, H.; Hibino, H.; Taniyasu, Y. Epitaxial intercalation growth of scalable hexagonal boron nitride/graphene bilayer moiré materials with highly convergent interlayer angles. ACS Nano 2021, 15, 14384–14393. [Google Scholar] [CrossRef] [PubMed]
- Sławińska, J.; Zasada, I.; Klusek, Z. Energy gap tuning in graphene on hexagonal boron nitride bilayer system. Phys. Rev. B 2010, 81, 155433. [Google Scholar] [CrossRef]
- Topsakal, M.; Aktuerk, E.; Ciraci, S. First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys. Rev. B 2009, 79, 115442. [Google Scholar] [CrossRef]
- Moon, P.; Koshino, M. Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice. Phys. Rev. B 2014, 90, 155406. [Google Scholar] [CrossRef]
- Koshino, M.; Moon, P. Electronic properties of incommensurate atomic layers. J. Phys. Soc. Jpn 2015, 84, 121001. [Google Scholar] [CrossRef]
- Wei, Y.; Eryin, W.; Changhua, B. Quasicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling. Proc. Natl. Acad. Sci. USA 2018, 115, 6928–6933. [Google Scholar]
- Moon, P.; Koshino, M. Energy Spectrum and Quantum Hall Effect in Twisted Bilayer Graphene. Phys. Rev. B 2012, 85, 195458. [Google Scholar] [CrossRef]
- Catarina, G.; Amorim, B.; Castro, E.V. Handbook of Graphene, 6th ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2019; pp. 117–232. [Google Scholar]
- Kindermann, M.; Uchoa, B.; Miller, D.L. Zero energy modes and gate-tunable gap in graphene on hexagonal boron nitride. Phys. Rev. B 2012, 86, 115415. [Google Scholar] [CrossRef]
- Chen, Y.L.; Feng, X.B.; Hong, D.D. Optical absorptions in monolayer and bilayer graphene. Acta. Phys. Sin. 2013, 62, 187301. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, R.; Feng, X.B. Theoretical studies on optical absorption in twisted bilayer graphene under vertical electric field. Acta Phys. Sin. 2022, 71, 054203. [Google Scholar] [CrossRef]
- Xu, C.; Balents, L. Topological superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 2018, 121, 087001. [Google Scholar] [CrossRef] [PubMed]
- Yankowitz, M.; Chen, S.; Polshyn, H.; Zhang, Y.; Watanabe, K.; Taniguchi, T.; Dean, C.R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Belfield, K.D.; Yao, S.; Bonder, M.V. Two-photon absorping photonic materials: From fundamentals to applications. Adv. Polym. Sci. 2008, 213, 97–156. [Google Scholar]
- Yang, H.; Feng, X.; Wang, Q. Giant Two-Photon Absorption in Bilayer Graphene. Nano Lett. 2011, 11, 2622–2627. [Google Scholar] [CrossRef]
- Biswas, S.; Tiwary, C.S.; Vinod, S.; Kole, A.K.; Chatterjee, U.; Kumbhakar, P.; Ajayan, P.M. Nonlinear Optical Properties and Temperature Dependent Photoluminescence in hBN-GO Heterostructure 2D Material. J. Phys. Chem. C. 2017, 121, 8060–8069. [Google Scholar] [CrossRef]
Sample | Electric Field | Twist Angle (Degree) | Wavelength (nm) | β (Experiment) (m/W) | β (Other Theory) (m/W) | β (This Theory) (m/W) |
---|---|---|---|---|---|---|
BLG | 0 | 0 | 3100 | 2 × 10−3 [35] | 2 × 10−3 [35] | |
hBN/GO nanosheets | 0 | 0 | 532 | (1.34 ± 0.20) × 10−8 [36] | ||
hBN nanosheets | 0 | 0 | 532 | (1.14 ± 0.70) × 10−8 [36] | ||
BLG | 0 | 0 | 3100 | 3.8 × 10−4 [31] | ||
tBLG | 0 | 3.89 | 3100 | 3 × 10−6 [31] | ||
tBLG | 0 | 7.34 | 3100 | 3.2 × 10−6 [31] | ||
tBLG | 0 | 13.17 | 3100 | 3.2 × 10−6 [31] | ||
TLG | 0 | 0 | 2200 | 1.2 × 10−4 [31] | ||
tTLG | 0 | 3.89 | 3100 | 2.5 × 10−4 [31] | ||
tTLG | 0 | 7.34 | 3100 | 2.4 × 10−4 [31] | ||
tTLG | 0 | 13.17 | 2200 | 2 × 10−4 [31] | ||
tDBLG | 0 | 3.89 | 3100 | 3.6 × 10−4 [31] | ||
tDBLG | 0 | 7.34 | 3100 | 3.5 × 10−4 [31] | ||
tDBLG | 0 | 13.17 | 3100 | 3 × 10−4 [31] | ||
BLG | 0 | 0 | 3100 | 4.1 × 10−6 | ||
tBLG | 0 | 3.89 | 3870 | 2.8 × 10−5 | ||
tBLG | 0 | 7.34 | 1650 | 5.5 × 10−5 | ||
tBLG | 0.1 V/Å | 3.89 | 4100 | 4.1 × 10−5 | ||
G/hBN | 0 | 0 | 6200 | 1.1 × 10−6 | ||
tG/hBN | 0 | 3.89 | 2480 | 5.1 × 10−6 | ||
tG/hBN | 0 | 7.34 | 1033 | 2.2 × 10−6 | ||
tG/hBN | 0.1 V/Å | 3.89 | 2480 | 9 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Chen, Y.; Yang, G.; Wang, Q.; Feng, X. Two-Photon Absorption in Twisted Graphene/Hexagonal Boron Nitride Heterojunction Tuned by Vertical Electric Field. Nanomaterials 2025, 15, 345. https://doi.org/10.3390/nano15050345
Chen M, Chen Y, Yang G, Wang Q, Feng X. Two-Photon Absorption in Twisted Graphene/Hexagonal Boron Nitride Heterojunction Tuned by Vertical Electric Field. Nanomaterials. 2025; 15(5):345. https://doi.org/10.3390/nano15050345
Chicago/Turabian StyleChen, Mengping, Yingliang Chen, Guang Yang, Qiwen Wang, and Xiaobo Feng. 2025. "Two-Photon Absorption in Twisted Graphene/Hexagonal Boron Nitride Heterojunction Tuned by Vertical Electric Field" Nanomaterials 15, no. 5: 345. https://doi.org/10.3390/nano15050345
APA StyleChen, M., Chen, Y., Yang, G., Wang, Q., & Feng, X. (2025). Two-Photon Absorption in Twisted Graphene/Hexagonal Boron Nitride Heterojunction Tuned by Vertical Electric Field. Nanomaterials, 15(5), 345. https://doi.org/10.3390/nano15050345