Superconductivity and Magnetism in Two-Dimensional and Layered Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Duong, D.L.; Yun, S.J.; Lee, Y.H. van der Waals layered materials: Opportunities and challenges. ACS Nano 2017, 11, 11803–11830. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef]
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Phot. 2014, 8, 899–907. [Google Scholar] [CrossRef]
- Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052. [Google Scholar] [CrossRef]
- Klemm, R.A. Layered Superconductors: Volume 1; Oxford University Press: Oxford, UK, 2012; Volume 153. [Google Scholar]
- Hosono, H.; Kuroki, K. Iron-based superconductors: Current status of materials and pairing mechanism. Phys. C Supercond. Appl. 2015, 514, 399–422. [Google Scholar] [CrossRef]
- Saito, Y.; Nojima, T.; Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2016, 2, 16094. [Google Scholar] [CrossRef]
- Qiu, D.; Gong, C.; Wang, S.; Zhang, M.; Yang, C.; Wang, X.; Xiong, J. Recent advances in 2D superconductors. Adv. Mater. 2021, 33, 2006124. [Google Scholar] [CrossRef]
- Ji, H.; Liu, Y.; Ji, C.; Wang, J. Two-dimensional and interface superconductivity in crystalline systems. Acc. Mater. Res. 2024, 5, 1146–1157. [Google Scholar] [CrossRef]
- Kimura, T.; Tokura, Y. Layered magnetic manganites. Annu. Rev. Mater. Sci. 2000, 30, 451–474. [Google Scholar] [CrossRef]
- de Jongh, L.J. Magnetic Properties of Layered Transition Metal Compounds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 9. [Google Scholar]
- Gibertini, M.; Koperski, M.; Morpurgo, A.F.; Novoselov, K.S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Kurebayashi, H.; Garcia, J.H.; Khan, S.; Sinova, J.; Roche, S. Magnetism, symmetry and spin transport in van der Waals layered systems. Nat. Rev. Phys. 2022, 4, 150–166. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, Y.; Li, H.; Zhai, T. Layer structured materials for advanced energy storage and conversion. Small 2017, 13, 1701649. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, Q.; Wang, W.; Cao, H.; Yang, Q.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684. [Google Scholar] [CrossRef]
- Liu, X.; Hersam, M.C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684. [Google Scholar] [CrossRef]
- Turunen, M.; Brotons-Gisbert, M.; Dai, Y.; Wang, Y.; Scerri, E.; Bonato, C.; Jöns, K.D.; Sun, Z.; Gerardot, B.D. Quantum photonics with layered 2D materials. Nat. Rev. Phys. 2022, 4, 219–236. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, C.; Zhong, J.; Ding, J.; Wang, Z.M.; Liu, Z. Spintronics in two-dimensional materials. Nano-Micro Lett. 2020, 12, 93. [Google Scholar] [CrossRef]
- Ahn, E.C. 2D materials for spintronic devices. npj 2D Mater. Appl. 2020, 4, 17. [Google Scholar] [CrossRef]
- Hai, Q.; Chen, H.; Sun, C.; Chen, D.; Qi, Y.; Shi, M.; Zhao, X. Green-light GaN p-n junction luminescent particles enhance the superconducting properties of B(P)SCCO smart meta-superconductors (SMSCs). Nanomaterials 2023, 13, 3029. [Google Scholar] [CrossRef] [PubMed]
- Rostami, H.; Cilento, F.; Cappelluti, E. Pump-driven opto-magnetic properties in semiconducting transition-metal dichalcogenides: An analytical model. Nanomaterials 2024, 14, 707. [Google Scholar] [CrossRef] [PubMed]
- Sellati, N.; Fiore, J.; Castellani, C.; Benfatto, L. Optical absorption in tilted geometries as an indirect measurement of longitudinal plasma waves in layered cuprates. Nanomaterials 2024, 14, 1021. [Google Scholar] [CrossRef] [PubMed]
- Piatti, E.; Torsello, D.; Breccia, F.; Tamegai, T.; Ghigo, G.; Daghero, D. Superconductivity of Co-Doped CaKFe4As4 Investigated via Point-Contact Spectroscopy and London Penetration Depth Measurements. Nanomaterials 2024, 14, 1319. [Google Scholar] [CrossRef]
- Tresca, C.; Profeta, G.; Bisti, F. Doping the spin-polarized Graphene minicone on Ni (111). Nanomaterials 2024, 14, 1448. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piatti, E. Superconductivity and Magnetism in Two-Dimensional and Layered Materials. Nanomaterials 2025, 15, 1284. https://doi.org/10.3390/nano15161284
Piatti E. Superconductivity and Magnetism in Two-Dimensional and Layered Materials. Nanomaterials. 2025; 15(16):1284. https://doi.org/10.3390/nano15161284
Chicago/Turabian StylePiatti, Erik. 2025. "Superconductivity and Magnetism in Two-Dimensional and Layered Materials" Nanomaterials 15, no. 16: 1284. https://doi.org/10.3390/nano15161284
APA StylePiatti, E. (2025). Superconductivity and Magnetism in Two-Dimensional and Layered Materials. Nanomaterials, 15(16), 1284. https://doi.org/10.3390/nano15161284