Properties of CO2 Micro-Nanobubbles and Their Significant Applications in Sustainable Development
Abstract
1. Introduction
2. Properties of CO2 MNBs
2.1. High Stability
- At pH 4.2: Dominant size distribution 150–250 nm;
- At pH 7.5: Decrease in quantity, and the size distribution is concentrated between 100 and 150 nm;
- At pH 9.0: An increase in quantity, and the size distribution is concentrated between 70 and 100 nm.
2.2. High Mass Transfer Efficiency
2.3. Negative Surface Charge
2.4. Inhibition and Synergistic Effect of CO2 MNBs on Hydroxyl Radical Generation
Preparation Method | Solvent | Characterization Method | Lifetime | pH Value | Average Bubble Size | Zeta Potential | Dissolved CO2 Concentration | Mass Transfer Performance | Main Conclusions |
---|---|---|---|---|---|---|---|---|---|
nanobubble membrane | Deionized water (DW) | NTA | ≤5 days (The loss was over 60% after three days) | 4~4.5 | 75–250 nm | −3.05 mV~+2.68 mV | —— | CO2 MNBs are 11 times that of macroscopic large bubbles | CO2 MNBs optimize mass transfer and buffering simultaneously through their ultra-high specific surface area and interfacial reactivity [30]. |
DW, Tap water (TW) | Zetasizer Nano ZS, ASTM D513-92 (1996) standard measurement | —— | 3.78 (TW); 2.13 (DW) | 18.17 nm~299.5 nm (TW); 1.63 nm~216.1 nm (DW) | −5.91 mV (TW); −3.23 mV (DW) | It rose from 2 ppm to 24 ppm | —— | CO2 MNBs and biochar work in synergy to achieve the triple goals of CO2 resource utilization, soil quality improvement, efficiency enhancement, and crop yield increase [32]. | |
DW | DLS, Zetasizer, CO2 Sensor | ≥7 days | <4.0 | 200–500 nm | −8~−19 mV | 2000 ppm | —— | The high solubility and acidic environment of CO2 MNBs can provide a basis for food processing applications [39]. | |
periodic transformer device | DW | DLS | <48 h | —— | 41 nm and 338 nm | —— | —— | —— | CO2 MNBs take advantage of their high solubility to achieve a small size advantage, but their chemical activity limits their long-term stability [9]. |
high-pressure fluid dynamics | DW | Zetasizer, High-temperature NMR imaging analyzer | —— | —— | 255~712 nm | −3.68 mV | —— | A longer relaxation time table of CO2 MNBs than DW indicates an increase in the fluidity of water molecules | The addition of CO2 MNBs can significantly increase the methane yield of anaerobic digestion of corn stalks (up to 17%), and the mechanisms include enhancing microbial enzyme activity, improving pH buffering capacity, and promoting substrate degradation [36]. |
the hydrodynamic cavitation method | DW, 1 mM salt water (NaCl, CaCl2, AlCl3) | DLS, the phase analysis light scattering method | ≤5 days (DW); ≥14 days (1 mM salt water) | 4~4.5 | 160 nm (DW); 200~300 nm (1 mM salt water) | +9 mV (DW); +10 mV (1 mM salt water) | —— | —— | The stability of CO2 MNBs in salt water is enhanced due to ion inhibition dissolution [31]. |
mechanical high-speed cavitation equipment (self-made equipment) | Aqueous solution of ethanol (10%, 30%, 50% ethanol) | DLS, NTA, the phase analysis light scattering method | 20 days | 4~5 | 500 nm (10%); 3500 nm (50%); | −5 mV~0 mV; | —— | —— | The stability of CO2 MNBs is highly dependent on pH and ethanol concentration. When acidity collapses, hydroxyl radicals are produced, but a mixture of H2 can inhibit free radicals [33]. |
mechanical shear combined with pressure drop nucleation method | DW | Zeta Potential Analyzer | —— | 4.0 | —— | −20~−27 mV | —— | —— | The type of gas affects the stability of MNBs by altering the zeta potential. Among them, O2 MNBs and N2 MNBs are the most stable due to their high negative charges, while the stability of CO2 MNBs is weakened by an acidic environment [34]. |
3. Applications of CO2 MNBs in Different Fields
3.1. Agriculture
3.1.1. Enhanced Gas Transfer and Carbon Source Delivery
3.1.2. Surface Negative Charge
3.1.3. Soil Acidification Mitigation and Nutrient Mobilization
3.2. Food Processing
3.2.1. Efficient Nucleation Medium
3.2.2. Synergistic Effect of High Stability and Surface Negative Charge
3.2.3. Enhanced Interfacial Enrichment via Ultra-Low Buoyancy
3.3. CO2 EOR and CGS
3.3.1. Micro-Nano Size and Efficient Mass Transfer
3.3.2. High Stability
3.3.3. Efficient Nucleation Medium
3.3.4. Surface Negative Charge
3.4. Construction and Mining
3.4.1. Enhanced Gas Transfer and Carbon Source Delivery
3.4.2. Surface Negative Charge
3.5. Anaerobic Digestion
3.5.1. Enhanced Gas Transfer and Carbon Source Delivery
3.5.2. Buffering pH Fluctuation and Stabilizing Anaerobic Digestion
3.6. Microalgae Cultivation
Enhanced Gas Transfer and Carbon Source Delivery
3.7. Industrial Crystallization
3.7.1. Efficient Nucleation Medium
3.7.2. Surface Negative Charge
4. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Lacis, A.A.; Schmidt, G.A.; Rind, D.; Ruedy, R.A. Atmospheric CO2: Principal Control Knob Governing Earth’s Temperature. Science 2010, 330, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the Greenhouse Effect and Global Warming: From the Pioneering Work of Arrhenius and Callendar to Today’s Earth System Models. Endeavour 2016, 40, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Khan, M.K.; Kim, J. Revolutionary Advancements in Carbon Dioxide Valorization via Metal-Organic Framework-Based Strategies. Carbon Capture Sci. Technol. 2025, 15, 100405. [Google Scholar] [CrossRef]
- Liu, H.J.; Were, P.; Li, Q.; Gou, Y.; Hou, Z. Worldwide Status of CCUS Technologies and Their Development and Challenges in China. Geofluids 2017, 2017, 6126505. [Google Scholar] [CrossRef]
- Huang, B.; Xu, S.; Gao, S.; Liu, L.; Tao, J.; Niu, H.; Cai, M.; Cheng, J. Industrial Test and Techno-Economic Analysis of CO2 Capture in Huaneng Beijing Coal-Fired Power Station. Appl. Energy 2010, 87, 3347–3354. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T. Preparation Method and Application of Nanobubbles: A Review. Coatings 2023, 13, 1510. [Google Scholar] [CrossRef]
- Lou, S.-T.; Ouyang, Z.-Q.; Zhang, Y.; Li, X.-J.; Hu, J.; Li, M.-Q.; Yang, F.-J. Nanobubbles on Solid Surface Imaged by Atomic Force Microscopy. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2000, 18, 2573–2575. [Google Scholar] [CrossRef]
- Tan, B.H.; An, H.; Ohl, C.-D. Stability of Surface and Bulk Nanobubbles. Curr. Opin. Colloid Interface Sci. 2021, 53, 101428. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, H.; Qi, N.; Qin, Y.; Zhang, X.; Li, Y. Generation and Stability of Size-Adjustable Bulk Nanobubbles Based on Periodic Pressure Change. Sci. Rep. 2019, 9, 1118. [Google Scholar] [CrossRef]
- Discher, B.M.; Bermudez, H.; Hammer, D.A.; Discher, D.E.; Won, Y.-Y.; Bates, F.S. Cross-Linked Polymersome Membranes: Vesicles with Broadly Adjustable Properties. J. Phys. Chem. B 2002, 106, 2848–2854. [Google Scholar] [CrossRef]
- Lohse, D.; Zhang, X. Surface Nanobubbles and Nanodroplets. Rev. Mod. Phys. 2015, 87, 981–1035. [Google Scholar] [CrossRef]
- Craig, V.S.J. Very Small Bubbles at Surfaces—The Nanobubble Puzzle. Soft Matter 2010, 7, 40–48. [Google Scholar] [CrossRef]
- Ji, X.; Liu, C.; Pan, G. Interfacial Oxygen Nanobubbles Reduce Methylmercury Production Ability of Sediments in Eutrophic Waters. Ecotoxicol. Environ. Saf. 2020, 188, 109888. [Google Scholar] [CrossRef]
- Haris, S.; Qiu, X.; Klammler, H.; Mohamed, M.M.A. The Use of Micro-Nano Bubbles in Groundwater Remediation: A Comprehensive Review. Groundw. Sustain. Dev. 2020, 11, 100463. [Google Scholar] [CrossRef]
- Matsumoto, M. Surface Tension and Stability of a Nanobubble in Water: Molecular Simulation. J. Fluid Sci. Technol. 2008, 3, 922–929. [Google Scholar] [CrossRef]
- Zhang, M.; Qiu, L.; Liu, G. Basic Characteristics and Application of Micro-Nano Bubbles in Water Treatment. IOP Conf. Ser. Earth Environ. Sci. 2020, 510, 042050. [Google Scholar] [CrossRef]
- Khaled Abdella Ahmed, A.; Sun, C.; Hua, L.; Zhang, Z.; Zhang, Y.; Marhaba, T.; Zhang, W. Colloidal Properties of Air, Oxygen, and Nitrogen Nanobubbles in Water: Effects of Ionic Strength, Natural Organic Matters, and Surfactants. Environ. Eng. Sci. 2018, 35, 720–727. [Google Scholar] [CrossRef]
- Singh, A.; Sekhon, A.S.; Unger, P.; Babb, M.; Yang, Y.; Michael, M. Impact of Gas Micro-nano-bubbles on the Efficacy of Commonly Used Antimicrobials in the Food Industry. J. Appl. Microbiol. 2021, 130, 1092–1105. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xiao, W.; Pu, W.; Hu, J.; Zhao, J.; Zhang, L. CH4 Nanobubbles on the Hydrophobic Solid–Water Interface Serving as the Nucleation Sites of Methane Hydrate. Langmuir 2018, 34, 10181–10186. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Ma, X.; He, W.; Liu, C.; Liu, Z. Functional Micro/Nanobubbles for Ultrasound Medicine and Visualizable Guidance. Sci. China Chem. 2021, 64, 899–914. [Google Scholar] [CrossRef]
- Temesgen, T.; Bui, T.T.; Han, M.; Kim, T.; Park, H. Micro and Nanobubble Technologies as a New Horizon for Water-Treatment Techniques: A Review. Adv. Colloid Interface Sci. 2017, 246, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.K.A.; Shi, X.; Hua, L.; Manzueta, L.; Qing, W.; Marhaba, T.; Zhang, W. Influences of Air, Oxygen, Nitrogen, and Carbon Dioxide Nanobubbles on Seed Germination and Plant Growth. J. Agric. Food Chem. 2018, 66, 5117–5124. [Google Scholar] [CrossRef]
- Jin, N.; Zhang, F.; Cui, Y.; Sun, L.; Gao, H.; Pu, Z.; Yang, W. Environment-Friendly Surface Cleaning Using Micro-Nano Bubbles. Particuology 2022, 66, 1–9. [Google Scholar] [CrossRef]
- Rosa, A.F.; Rubio, J. On the Role of Nanobubbles in Particle–Bubble Adhesion for the Flotation of Quartz and Apatitic Minerals. Miner. Eng. 2018, 127, 178–184. [Google Scholar] [CrossRef]
- Tao, H.; Chun, Y.E.; Chun-Hua, L.I.; Bao-Jun, Z.; Lei, Z. Treatment effect of microbubble aeration technology on black-odor river water. J. Environ. Eng. Technol. 2011, 1, 20–25. [Google Scholar] [CrossRef]
- Chu, L.-B.; Xing, X.-H.; Yu, A.-F.; Zhou, Y.-N.; Sun, X.-L.; Jurcik, B. Enhanced Ozonation of Simulated Dyestuff Wastewater by Microbubbles. Chemosphere 2007, 68, 1854–1860. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Q.; Ma, H.; Huang, P.; Li, J.; Kikuchi, T. Effect of Micro-Bubbles on Coagulation Flotation Process of Dyeing Wastewater. Sep. Purif. Technol. 2010, 71, 337–346. [Google Scholar] [CrossRef]
- Weijs, J.H.; Seddon, J.R.T.; Lohse, D. Diffusive Shielding Stabilizes Bulk Nanobubble Clusters. ChemPhysChem 2012, 13, 2197–2204. [Google Scholar] [CrossRef] [PubMed]
- Ebina, K.; Shi, K.; Hirao, M.; Hashimoto, J.; Kawato, Y.; Kaneshiro, S.; Morimoto, T.; Koizumi, K.; Yoshikawa, H. Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice. PLoS ONE 2013, 8, e65339. [Google Scholar] [CrossRef]
- Antonio Cerrón-Calle, G.; Luna Magdaleno, A.; Graf, J.C.; Apul, O.G.; Garcia-Segura, S. Elucidating CO2 Nanobubble Interfacial Reactivity and Impacts on Water Chemistry. J. Colloid Interface Sci. 2022, 607, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Han, Z.; He, C.; Feng, Q.; Wang, K.; Wang, Y.; Luo, N.; Dodbiba, G.; Wei, Y.; Otsuki, A.; et al. Long-Term Stability of Different Kinds of Gas Nanobubbles in Deionized and Salt Water. Materials 2021, 14, 1808. [Google Scholar] [CrossRef]
- Singh, E.; Kumar, A.; Lo, S.-L. Synergistic Roles of Carbon Dioxide Nanobubbles and Biochar for Promoting Direct CO2 Assimilation by Plants and Optimizing Nutrient Uptake Efficiency. Environ. Res. 2024, 244, 117918. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Kurokawa, H.; Matsui, H.; He, C.; Wang, K.; Wei, Y.; Dodbiba, G.; Otsuki, A.; Fujita, T. Stability and Free Radical Production for CO2 and H2 in Air Nanobubbles in Ethanol Aqueous Solution. Nanomaterials 2022, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Ushikubo, F.Y.; Enari, M.; Furukawa, T.; Nakagawa, R.; Makino, Y.; Kawagoe, Y.; Oshita, S. Zeta-Potential of Micro- and/or Nano-Bubbles in Water Produced by Some Kinds of Gases. IFAC Proc. Vol. 2010, 43, 283–288. [Google Scholar] [CrossRef]
- Takemura, T.; Hamamoto, S.; Sato, M.; Suzuki, K.; Okuzawa, K. Migration Behavior and Lifetime of CO2 Micro-Nano Bubbles in Shallow Aquifer. Int. J. Greenh. Gas Control 2024, 137, 104207. [Google Scholar] [CrossRef]
- Song, H.; Hou, T.; Jiao, Y.; Liu, L.; Pan, X.; Li, G.; Zhang, Q.; Zeng, Y.; Cui, Z.; Li, P.; et al. Supplementation of CO2-Nanobubble Water to Enhance the Methane Production from Anaerobic Digestion of Corn Straw. Chemosphere 2023, 313, 137613. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M. ζ Potential of Microbubbles in Aqueous Solutions: Electrical Properties of the Gas−water Interface. J. Phys. Chem. B 2005, 109, 21858–21864. [Google Scholar] [CrossRef]
- Oh, S.H.; Kim, J.-M. Generation and Stability of Bulk Nanobubbles. Langmuir 2017, 33, 3818–3823. [Google Scholar] [CrossRef]
- Phan, K.K.T.; Truong, T.; Wang, Y.; Bhandari, B. Formation and Stability of Carbon Dioxide Nanobubbles for Potential Applications in Food Processing. Food Eng. Rev. 2021, 13, 3–14. [Google Scholar] [CrossRef]
- Takahashi, M.; Shirai, Y.; Sugawa, S. Free-Radical Generation from Bulk Nanobubbles in Aqueous Electrolyte Solutions: ESR Spin-Trap Observation of Microbubble-Treated Water. Langmuir 2021, 37, 5005–5011. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Chiba, K.; Li, P. Free-Radical Generation from Collapsing Microbubbles in the Absence of a Dynamic Stimulus. J. Phys. Chem. B 2007, 111, 1343–1347. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.H.; Kim, M.S.; Kim, J.-H.; Fortner, J.D. Nanobubble Reactivity: Evaluating Hydroxyl Radical Generation (or Lack Thereof) under Ambient Conditions. ACS EST Eng. 2023, 3, 1504–1510. [Google Scholar] [CrossRef]
- Tada, K.; Maeda, M.; Nishiuchi, Y.; Nagahara, J.; Hata, T.; Zhuowei, Z.; Yoshida, Y.; Watanabe, S.; Ohmori, M. ESR Measurement of Hydroxyl Radicals in Micro-Nanobubble Water. Chem. Lett. 2014, 43, 1907–1908. [Google Scholar] [CrossRef]
- Liu, S.; Oshita, S.; Kawabata, S.; Makino, Y.; Yoshimoto, T. Identification of ROS Produced by Nanobubbles and Their Positive and Negative Effects on Vegetable Seed Germination. Langmuir 2016, 32, 11295–11302. [Google Scholar] [CrossRef]
- Fujita, T.; Kurokawa, H.; Han, Z.; Zhou, Y.; Matsui, H.; Ponou, J.; Dodbiba, G.; He, C.; Wei, Y. Free Radical Degradation in Aqueous Solution by Blowing Hydrogen and Carbon Dioxide Nanobubbles. Sci. Rep. 2021, 11, 3068. [Google Scholar] [CrossRef]
- Khan, P.; Wang, H.; Gao, W.; Huang, F.; Khan, N.A.; Shakoor, N. Effects of Micro-Nano Bubble with CO2 Treated Water on the Growth of Amaranth Green (Amaranthus Viridis). Environ. Sci. Pollut. Res. 2022, 29, 72033–72044. [Google Scholar] [CrossRef]
- Xue, S.; Gao, J.; Liu, C.; Marhaba, T.; Zhang, W. Unveiling the Potential of Nanobubbles in Water: Impacts on Tomato’s Early Growth and Soil Properties. Sci. Total Environ. 2023, 903, 166499. [Google Scholar] [CrossRef]
- Truong, T.; Palmer, M.; Bansal, N.; Bhandari, B. Effect of Solubilised Carbon Dioxide at Low Partial Pressure on Crystallisation Behaviour, Microstructure and Texture of Anhydrous Milk Fat. Food Res. Int. 2017, 95, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Truong, T.; Palmer, M.; Bansal, N.; Bhandari, B. Investigation of Solubility of Carbon Dioxide in Anhydrous Milk Fat by Lab-Scale Manometric Method. Food Chem. 2017, 237, 667–676. [Google Scholar] [CrossRef]
- Xun, A.; Truong, T.; Bhandari, B. Effect of Carbonation of Supersaturated Lactose Solution on Crystallisation Behaviour of Alpha-Lactose Monohydrate. Food Biophys. 2017, 12, 52–59. [Google Scholar] [CrossRef]
- Adhikari, B.M.; Truong, T.; Bansal, N.; Bhandari, B. Influence of Gas Addition on Crystallisation Behaviour of Lactose from Supersaturated Solution. Food Bioprod. Process. 2018, 109, 86–97. [Google Scholar] [CrossRef]
- Adhikari, B.M.; Truong, T.; Bansal, N.; Bhandari, B. Effect of CO2 Bubbles on Crystallization Behavior of Anhydrous Milk Fat. J. Am. Oil Chem. Soc. 2020, 97, 363–375. [Google Scholar] [CrossRef]
- Truong, T.; Palmer, M.; Bansal, N.; Bhandari, B. Effect of Dissolved Carbon Dioxide on the Sonocrystallisation and Physical Properties of Anhydrous Milk Fat. Int. Dairy J. 2019, 93, 45–56. [Google Scholar] [CrossRef]
- Truong, T.; Palmer, M.; Bansal, N.; Bhandari, B. Effects of Dissolved Carbon Dioxide in Fat Phase of Cream on Manufacturing and Physical Properties of Butter. J. Food Eng. 2018, 226, 9–21. [Google Scholar] [CrossRef]
- Phan, K.; Truong, T.; Wang, Y.; Bhandari, B. Impact of Carbon Dioxide Nanobubbles on Crystallising Properties of Palm Oil. Food Bioprocess Technol. 2024, 17, 4290–4302. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, M.; Bhandari, B.; Sun, J.; Gao, Z. Infusion of CO2 in a Solid Food: A Novel Method to Enhance the Low-Frequency Ultrasound Effect on Immersion Freezing Process. Innov. Food Sci. Emerg. Technol. 2016, 35, 194–203. [Google Scholar] [CrossRef]
- Adhikari, B.M.; Tung, V.P.; Truong, T.; Bansal, N.; Bhandari, B. Water Crystallisation of Model Sugar Solutions with Nanobubbles Produced from Dissolved Carbon Dioxide. Food Biophys. 2019, 14, 403–414. [Google Scholar] [CrossRef]
- Adhikari, B.M.; Truong, T.; Prakash, S.; Bansal, N.; Bhandari, B. Impact of Incorporation of CO2 on the Melting, Texture and Sensory Attributes of Soft-Serve Ice Cream. Int. Dairy J. 2020, 109, 104789. [Google Scholar] [CrossRef]
- Adhikari, B.M.; Tung, V.P.; Truong, T.; Bansal, N.; Bhandari, B. Impact of In-Situ CO2 Nano-Bubbles Generation on Freezing Parameters of Selected Liquid Foods. Food Biophys. 2020, 15, 97–112. [Google Scholar] [CrossRef]
- Amamcharla, J.; Li, B.; Liu, Z. Use of Micro- and Nano-Bubbles in Liquid Processing. WO2017127636A1, 27 July 2021. [Google Scholar]
- Phan, K.; Truong, T.; Wang, Y.; Bhandari, B. Effect of CO2 Nanobubbles Incorporation on the Viscosity Reduction of Fruit Juice Concentrate and Vegetable Oil. Int. J. Food Sci. Technol. 2021, 56, 4278–4286. [Google Scholar] [CrossRef]
- Phan, K.; Truong, T.; Wang, Y.; Bhandari, B. Generation and Influence of Carbon Dioxide Nanobubbles on Physicochemical Properties Including the Surface Tension of Clarified Apple Juice. Food Biophys. 2024, 19, 131–142. [Google Scholar] [CrossRef]
- Khalesi, M.; Gebruers, K.; Riveros-Galan, D.; Deckers, S.; Moosavi-Movahedi, A.A.; Verachtert, H.; Derdelinckx, G. Hydrophobin Purification Based on the Theory of CO2-Nanobubbles. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 111–118. [Google Scholar] [CrossRef]
- Xue, Z.; Yamada, T.; Matsuoka, T.; Kameyama, H.; Nishio, S. Carbon Dioxide Microbubble Injection–Enhanced Dissolution in Geological Sequestration. Energy Procedia 2011, 4, 4307–4313. [Google Scholar] [CrossRef]
- Xue, Z.; Park, H.; Ueda, R.; Nakano, M.; Nishii, T.; Inagaki, S. Microbubble CO2 Injection for Enhanced Oil Recovery and Geological Sequestration in Heterogeneous and Low Permeability Reservoirs. In Proceedings of the 14th Greenhouse Gas Control Technologies Conference, Melbourne, Australia, 21–26 October 2018; pp. 21–26. [Google Scholar]
- Patmonoaji, A.; Zhang, Y.; Xue, Z.; Park, H.; Suekane, T. Experimental and Numerical Simulation of Supercritical CO2 Microbubble Injection into a Brine-Saturated Porous Medium. Int. J. Greenh. Gas Control 2019, 91, 102830. [Google Scholar] [CrossRef]
- Zhai, H.; Xue, Z.; Park, H.; Aizawa, Y.; Baba, Y.; Zhang, Y. Migration Characteristics of Supercritical CO2 Microbubble Flow in the Berea Sandstone Revealed by Voxel-Based X-Ray Computed Tomography Imaging Analysis. J. Nat. Gas Sci. Eng. 2020, 77, 103233. [Google Scholar] [CrossRef]
- Seo, S.; Mastiani, M.; Hafez, M.; Kunkel, G.; Ghattas Asfour, C.; Garcia-Ocampo, K.I.; Linares, N.; Saldana, C.; Yang, K.; Kim, M. Injection of In-Situ Generated CO2 Microbubbles into Deep Saline Aquifers for Enhanced Carbon Sequestration. Int. J. Greenh. Gas Control 2019, 83, 256–264. [Google Scholar] [CrossRef]
- Aizawa, Y.; Baba, Y.; Xue, Z. Microbubble CO2 Injection for Geological Sequestration in Tight Sandstone Reservoirs. In Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Abu Dhabi, United Arab Emirates, 15–18 March 2021. [Google Scholar]
- Xue, Z.; Nishio, S.; Hagiwara, N.; Matsuoka, T. Microbubble Carbon Dioxide Injection for Enhanced Dissolution in Geological Sequestration and Improved Oil Recovery. Energy Procedia 2014, 63, 7939–7946. [Google Scholar] [CrossRef]
- Jiang, L.; Xue, Z.; Park, H. Enhancement of CO2 Dissolution and Sweep Efficiency in Saline Aquifer by Micro Bubble CO2 Injection. Int. J. Heat Mass Transf. 2019, 138, 1211–1221. [Google Scholar] [CrossRef]
- Miyoshi, S.; Hitomi, T.; Miida, H.; Wada, H.; Inaba, K.; Yamaura, M. Numerical Study on Field-Scale Behavior of Carbon in CO2 Micro Bubble Storage (CMS). Energy Procedia 2013, 37, 5978–5985. [Google Scholar] [CrossRef]
- Jia, H.; Yu, H.; Xie, F.; Yuan, Z.; Xu, K.; Wang, Y. Research on CO2 microbubble dissolution kinetics and enhanced oil recovery mechanisms. Chin. J. Theor. Appl. Mech. 2023, 55, 755–764. [Google Scholar] [CrossRef]
- Cai, L.; Wu, J.; Zhang, M.; Wang, K.; Li, B.; Yu, X.; Hou, Y.; Zhao, Y. Investigating the Potential of CO2 Nanobubble Systems for Enhanced Oil Recovery in Extra-Low-Permeability Reservoirs. Nanomaterials 2024, 14, 1280. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Miyoshi, H.; Yamazaki, K.; Gohara, K. Promoting Effect of Ultra-Fine Bubbles on CO2 Hydrate Formation. Energies 2021, 14, 3386. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, X.; Wang, H.; Hu, B.; Lei, Z.; Kobayashi, M.; Adachi, Y.; Shimizu, K.; Zhang, Z. Effects of Nanobubble Water on the Growth of Lactobacillus Acidophilus 1028 and Its Lactic Acid Production. RSC Adv. 2019, 9, 30760–30767. [Google Scholar] [CrossRef]
- Ito, M.; Sugai, Y. Nanobubbles Activate Anaerobic Growth and Metabolism of Pseudomonas Aeruginosa. Sci. Rep. 2021, 11, 16858. [Google Scholar] [CrossRef]
- Choi, H.; Inoue, M.; Kwon, S.; Choi, H.; Lim, M. Effective Crack Control of Concrete by Self-Healing of Cementitious Composites Using Synthetic Fiber. Materials 2016, 9, 248. [Google Scholar] [CrossRef]
- Kim, J.; Kitagaki, R.; Choi, H. Pore Filling Effect of Forced Carbonation Reactions Using Carbon Dioxide Nanobubbles. Materials 2020, 13, 4343. [Google Scholar] [CrossRef]
- Kim, H.; Choi, H.; Choi, H.; Lee, B.; Lee, D.; Lee, D.-E. Study on Physical Properties of Mortar for Section Restoration Using Calcium Nitrite and CO2 Nano-Bubble Water. Materials 2020, 13, 3897. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.; Park, D.; Doh, J.-H. Performance Improvement of Cement Materials by Mineral Carbonation Accelerated by CO2 Microbubble Water. Constr. Build. Mater. 2024, 447, 138210. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, Z.; Gu, Z.; Liu, F.; Shen, P.; Poon, C.S. A Novel Approach for Improving Aqueous Carbonation Kinetics with CO2 Micro- and Nano-Bubbles. Chem. Eng. J. 2024, 500, 157363. [Google Scholar] [CrossRef]
- Cao, X.; Jiang, T.; Shimada, H.; Sasaoka, T.; Hamanaka, A. Influence of CO2 Nano-Bubble Water Concentration and Curing Time on the Macroscopic and Microscopic Mechanical Properties of Cemented Backfill Materials. J. Build. Eng. 2024, 98, 111099. [Google Scholar] [CrossRef]
- Cao, X.; Hamanaka, A.; Shimada, H.; Sasaoka, T. Effect of CO2 Nanobubble Water on the Fracture Properties of Cemented Backfill Materials under Different Aggregate Fractal Dimensions. Appl. Sci. 2024, 14, 7792. [Google Scholar] [CrossRef]
- Orlich, J.N.; Kappes, R.D.P.; Gathje, J.C. Method for Processing Mineral Material Containing Acid-Consuming Carbonate and Precious Metal in Sulfide Minerals. WO2014179134A1, 6 November 2014. [Google Scholar]
- Vaziri Hassas, B.; Jin, J.; Dang, L.X.; Wang, X.; Miller, J.D. Attachment, Coalescence, and Spreading of Carbon Dioxide Nanobubbles at Pyrite Surfaces. Langmuir 2018, 34, 14317–14327. [Google Scholar] [CrossRef] [PubMed]
- Lian, F.; Deng, L.; Li, G.; Cao, Y.; Zhao, B.; Fan, K. Effective Purification of the Low-Rank Coal by the Collaboration of the Microemulsion Collector and the CO2 Nanobubbles. Fuel 2023, 339, 127370. [Google Scholar] [CrossRef]
- Wang, D.; Yang, X.; Tian, C.; Lei, Z.; Kobayashi, N.; Kobayashi, M.; Adachi, Y.; Shimizu, K.; Zhang, Z. Characteristics of Ultra-Fine Bubble Water and Its Trials on Enhanced Methane Production from Waste Activated Sludge. Bioresour. Technol. 2019, 273, 63–69. [Google Scholar] [CrossRef]
- Fan, Y.; Lei, Z.; Guo, Z.; Huang, W.; Wang, D.; Wang, X.; Zhang, Z.; Shimizu, K. Enhanced Solubilization of Solid Organics and Methane Production by Anaerobic Digestion of Swine Manure under Nano-Bubble Water Addition. Bioresour. Technol. 2020, 299, 122512. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Lei, Z.; Yang, X.; Kobayashi, M.; Adachi, Y.; Zhang, Z.; Shimizu, K. Effect of Nano-Bubble Water on High Solid Anaerobic Digestion of Pig Manure: Focus on Digestion Stability, Methanogenesis Performance and Related Mechanisms. Bioresour. Technol. 2020, 315, 123793. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, T.; Guo, Z.; Han, H.; Lei, Z.; Shimizu, K.; Zhang, Z.; Lee, D.-J. Enhanced Hydrolysis and Acidification of Cellulose at High Loading for Methane Production via Anaerobic Digestion Supplemented with High Mobility Nanobubble Water. Bioresour. Technol. 2020, 297, 122499. [Google Scholar] [CrossRef]
- Arbib, Z.; Ruiz, J.; Álvarez-Díaz, P.; Garrido-Pérez, C.; Perales, J.A. Capability of Different Microalgae Species for Phytoremediation Processes: Wastewater Tertiary Treatment, CO2 Bio-Fixation and Low Cost Biofuels Production. Water Res. 2014, 49, 465–474. [Google Scholar] [CrossRef]
- Razzak, S.A.; Hossain, M.M.; Lucky, R.A.; Bassi, A.S.; de Lasa, H. Integrated CO2 Capture, Wastewater Treatment and Biofuel Production by Microalgae Culturing—A Review. Renew. Sustain. Energy Rev. 2013, 27, 622–653. [Google Scholar] [CrossRef]
- Arudchelvam, Y.; Nirmalakhandan, N. Energetic Optimization of Algal Lipid Production in Bubble Columns: Part II: Evaluation of CO2 Enrichment. Biomass Bioenergy 2012, 46, 765–772. [Google Scholar] [CrossRef]
- Tang, T.; Wan, P.; Hu, Z. CO2 Bubbling to Improve Algal Growth, Nutrient Removal, and Membrane Performance in an Algal Membrane Bioreactor. Water Environ. Res. 2018, 90, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Feng, W.; Li, J.; Zhang, X.; Liu, L.; Li, H. Effects of Bubble Cutting Dynamic Behaviors on Microalgal Growth in Bubble Column Photobioreactor with a Novel Aeration Device. Front. Bioeng. Biotechnol. 2023, 11, 1225187. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Pei, H.; Han, F.; Wang, Y.; Hou, Q.; Chen, Y. Effects of Air Bubble Size on Algal Growth Rate and Lipid Accumulation Using Fine-Pore Diffuser Photobioreactors. Algal Res. 2018, 32, 293–299. [Google Scholar] [CrossRef]
- Cheng, J.; Song, Y.; Guo, W.; Miao, Y.; Chen, S.; Zhou, J. Developing Microporous Fibrous-Diaphragm Aerator to Decrease Bubble Generation Diameter for Improving Microalgal Growth with CO2 Fixation in a Raceway Pond. Bioresour. Technol. 2019, 276, 28–34. [Google Scholar] [CrossRef]
- Cheng, J.; Miao, Y.; Guo, W.; Song, Y.; Tian, J.; Zhou, J. Reduced Generation Time and Size of Carbon Dioxide Bubbles in a Volute Aerator for Improving Spirulina Sp. Growth. Bioresour. Technol. 2018, 270, 352–358. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, S.; Guo, W.; Song, Y.; Kumar, S.; Kubar, A.A.; Su, Y.; Li, Y. Developing Staggered Woven Mesh Aerator with Three Variable-Micropore Layers in Recycling Water Pipeline to Enhance CO2 Conversion for Improving Arthrospira Growth. Sci. Total Environ. 2021, 760, 143941. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, S.; Ding, Y.; Liao, Q.; Huang, Y.; Zhu, X. Optimizing the Gas Distributor Based on CO2 Bubble Dynamic Behaviors to Improve Microalgal Biomass Production in an Air-Lift Photo-Bioreactor. Bioresour. Technol. 2017, 233, 84–91. [Google Scholar] [CrossRef]
- Li, N.; Chen, C.; Zhong, F.; Zhang, S.; Xia, A.; Huang, Y.; Liao, Q.; Zhu, X. A Novel Magnet-Driven Rotary Mixing Aerator for Carbon Dioxide Fixation and Microalgae Cultivation: Focusing on Bubble Behavior and Cultivation Performance. J. Biotechnol. 2022, 352, 26–35. [Google Scholar] [CrossRef]
- Zimmerman, W.B.; Zandi, M.; Hemaka Bandulasena, H.C.; Tesař, V.; James Gilmour, D.; Ying, K. Design of an Airlift Loop Bioreactor and Pilot Scales Studies with Fluidic Oscillator Induced Microbubbles for Growth of a Microalgae Dunaliella Salina. Appl. Energy 2011, 88, 3357–3369. [Google Scholar] [CrossRef]
- Ying, K.; Al-Mashhadani, M.K.H.; Hanotu, J.O.; Gilmour, D.J.; Zimmerman, W.B. Enhanced Mass Transfer in Microbubble Driven Airlift Bioreactor for Microalgal Culture. Engineering 2013, 5, 735–743. [Google Scholar] [CrossRef]
- Fei, T.; Lin, L.; Li, X.; Yang, J.-Y.; Zhao, J.; Liu, L. Modeling Effect of Bubbles on Time-Dependent Radiation Transfer of Microalgae in a Photobioreactor for Carbon Dioxide Fixation. Photonics 2022, 9, 864. [Google Scholar] [CrossRef]
- Suzuki-Nagata, S.; Mase, N.; Kozuka, T.; Ng, J.C.; Suzuki, T. Effect of Ultrafine CO2 Bubbles on Euglena Gracilis Z Growth with CO2 Gas Bubble Size and Chlorophyll Content. Biosci. Biotechnol. Biochem. 2025, 89, 638–648. [Google Scholar] [CrossRef]
- Kumar, K.A.; Chattaraj, R.; Dhumal, U.; Mukhopadhyay, M.; Vinjamur, M.; Dalvi, S.V. Modeling of Precipitation of Ultra-Fine Particles by Pressure Reduction over CO2-Expanded Liquids. J. Supercrit. Fluids 2013, 79, 227–235. [Google Scholar] [CrossRef]
- Mondal, M.; Roy, S.; Mukhopadhyay, M. Process Intensification of Cooling Crystallization of Cholesterol from Acetone Solution Using CO2 Gas Bubbles: Experiments and Modeling. Chem. Eng. Process.-Process Intensif. 2022, 172, 108794. [Google Scholar] [CrossRef]
- Prasad, R.; Patsariya, R.; Dalvi, S.V. Precipitation of Curcumin by Pressure Reduction of CO2-Expanded Acetone. Powder Technol. 2017, 310, 143–153. [Google Scholar] [CrossRef]
- Shashvatt, U.; Benoit, J.; Aris, H.; Blaney, L. CO2-Assisted Phosphorus Extraction from Poultry Litter and Selective Recovery of Struvite and Potassium Struvite. Water Res. 2018, 143, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Waldschmidt, A.; Couvrat, N.; Berton, B.; Dupray, V.; Morin, S.; Petit, S.; Coquerel, G. Impact of Gas Composition in the Mother Liquor on the Formation of Macroscopic Inclusions and Crystal Growth Rates. Case Study with Ciclopirox Crystals. Cryst. Growth Des. 2011, 11, 2463–2470. [Google Scholar] [CrossRef]
- Matsumoto, M.; Morita, Y.; Yoshinaga, M.; Hirose, S.; Onoe, K. Reactive Crystallization of Lithium Carbonate Nanoparticles by Microwave Irradiation of Aqueous Solution Containing CO2 Microbubbles. J. Chem. Eng. Jpn. 2009, 42, s242–s248. [Google Scholar] [CrossRef]
- Huang, J.; Yin, Q.; Ulrich, J. Influence of Dissolved CO2 on Crystallization of Epsomite—Variation of Temperature. J. Cryst. Growth 2017, 469, 18–23. [Google Scholar] [CrossRef]
- Huang, J.; Yin, Q.; Ulrich, J. The Effect of Dissolved Gases as Impurities on Crystallization. Chem. Eng. Technol. 2016, 39, 1213–1218. [Google Scholar] [CrossRef]
- Kimura, T.; Wada, Y.; Kamei, S.; Shirakawa, Y.; Hiaki, T.; Matsumoto, M. Synthesis of CaMg(CO3)2 from Concentrated Brine by CO2 Fine Bubble Injection and Conversion to Inorganic Phosphor. J. Chem. Eng. Jpn. 2020, 53, 555–561. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Wang, X.; Tang, T.; Hu, J.; Zhou, X.; Zhang, L. Properties of CO2 Micro-Nanobubbles and Their Significant Applications in Sustainable Development. Nanomaterials 2025, 15, 1270. https://doi.org/10.3390/nano15161270
Zheng Z, Wang X, Tang T, Hu J, Zhou X, Zhang L. Properties of CO2 Micro-Nanobubbles and Their Significant Applications in Sustainable Development. Nanomaterials. 2025; 15(16):1270. https://doi.org/10.3390/nano15161270
Chicago/Turabian StyleZheng, Zeyun, Xingya Wang, Tao Tang, Jun Hu, Xingfei Zhou, and Lijuan Zhang. 2025. "Properties of CO2 Micro-Nanobubbles and Their Significant Applications in Sustainable Development" Nanomaterials 15, no. 16: 1270. https://doi.org/10.3390/nano15161270
APA StyleZheng, Z., Wang, X., Tang, T., Hu, J., Zhou, X., & Zhang, L. (2025). Properties of CO2 Micro-Nanobubbles and Their Significant Applications in Sustainable Development. Nanomaterials, 15(16), 1270. https://doi.org/10.3390/nano15161270