Gram-Scale Synthesis and Optical Properties of Self-Trapped-Exciton-Emitting Two-Dimensional Tin Halide Perovskites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ODASnI4 Perovskite Microcrystals
2.3. Synthesis of ODASnBr4−xIx Perovskite Microcrystals
2.4. Preparation of ODASnI4-BMA WLED
2.5. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, S.Q.; Tai, J.W.; He, W.; Yu, Y.J.; Feng, Z.Q.; Sun, Q.; Tong, K.N.; Shi, K.; Liu, B.C.; Zhu, M.; et al. Enhancing Light Outcoupling Efficiency via Anisotropic Low Refractive Index Electron Transporting Materials for Efficient Perovskite Light-Emitting Diodes. Adv. Mater. 2024, 36, 2400421. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.C.; Shen, Y.; Hu, X.M.; Su, Z.H.; Zhang, K.; Wang, B.F.; Cao, L.X.; Xie, F.M.; Li, H.Z.; Gao, X.; et al. Efficient and Stable Red Perovskite Light-Emitting Diodes via Thermodynamic Crystallization Control. Adv. Mater. 2024, 36, 2410255. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-Q.; Sun, Q.; Cai, Y.; Feng, Z.-Q.; Zheng, Q.; Liu, B.; Zhu, M.; Shi, T.; Liao, L.-S.; Xie, Y.-M.; et al. Mitigation of Nonradiative Recombination by Reconfiguring Triplet Energy of Additive Toward Efficient Blue Perovskite Light-Emitting Diodes. ACS Nano 2025, 19, 13053–13062. [Google Scholar] [CrossRef]
- He, H.; Yin, J.; Zhao, D.; Xing, Y.; Wang, B.; Xing, G.; Tian, P.; Zhang, W.; Mei, S.; Guo, R. Ethylenediammonium-asisted phase control and in-situ passivation of all-bromine quasi-2D perovskite for efficient pure-blue light-emitting diodes. Chem. Eng. J. 2025, 508, 160440. [Google Scholar] [CrossRef]
- He, H.; Mei, S.; Wen, Z.; Yang, D.; Yang, B.; Zhang, W.; Xie, F.; Xing, G.; Guo, R. Recent Advances in Blue Perovskite Quantum Dots for Light-Emitting Diodes. Small 2022, 18, 2103527. [Google Scholar] [CrossRef]
- Mei, S.; Yin, J.; Xing, Y.; He, H.; Gu, H.; Xia, J.; Zhang, W.; Liang, C.; Xing, G.; Guo, R. Designing High-Performance Pure-Red Metal Halide Perovskite Materials and Light-Emitting Diodes for Rec. 2020 Display. Nano Energy 2024, 122, 109339. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, N.-G. Quasi-Two-Dimensional Perovskite Solar Cells with Efficiency Exceeding 22%. ACS Energy Lett. 2022, 7, 757–765. [Google Scholar] [CrossRef]
- Xu, T.; Liu, S.; Il Seok, S.; Xiang, W. Surface chemistry-induced reconstruction of inorganic perovskites for efficient and stable inverted solar cells. Joule 2025, 9, 101826. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Liu, Y.; Luo, R.; Cheng, Y.; Shen, Y.; Wang, K.; Wang, M. Boosting Carrier Mobility in 2D Layered Perovskites for High-Performance UV Photodetector. Small Methods 2025, 9, 2400887. [Google Scholar] [CrossRef]
- Jiao, Z.; Wang, X.; Gao, J.; Huang, X.; Wang, Y. Waterproof Perovskite Quantum Dots for In-vivo Photoluminescence Bioimaging. Chem. Res. Chin. Univ. 2024, 40, 901–906. [Google Scholar] [CrossRef]
- Gualdrón-Reyes, A.F. Self-Trapped Exciton versus Band-Edge Electron Transitions: Insights of the Factors Affecting the Optical Properties of Lead-Free Sn-Halide Perovskites. Adv. Opt. Mater. 2025, 13, 2402043. [Google Scholar] [CrossRef]
- Xing, Y.; He, H.; Cui, Z.; Fu, Z.; Qin, S.; Zhang, W.; Mei, S.; Guo, R. Recent Advances in Optical Properties and Light-Emitting Diode Applications for 2D Tin Halide Perovskites. Adv. Opt. Mater. 2024, 12, 2302679. [Google Scholar] [CrossRef]
- Wang, A.; Guo, Y.; Zhou, Z.; Niu, X.; Wang, Y.; Muhammad, F.; Li, H.; Zhang, T.; Wang, J.; Nie, S.; et al. Aqueous Acid-Based Synthesis of Lead-Free Tin Halide Perovskites with Near-Unity Photoluminescence Quantum Efficiency. Chem. Sci. 2019, 10, 4573–4579. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.L.; Deng, Z.T.; Johnston, A.; Luo, J.W.; Chen, H.J.; Dong, Y.T.; Sabatini, R.; Sargent, E.H. Precursor Tailoring Enables Alkylammonium Tin Halide Perovskite Phosphors for Solid-State Lighting. Adv. Funct. Mater. 2022, 32, 2111346. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Wei, Y.; Liu, Y.; Hong, M. Exciton Localization for Highly Luminescent Two-Dimensional Tin-Based Hybrid Perovskites through Tin Vacancy Tuning. Angew. Chem. Int. Ed. 2023, 62, 202301684. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Zhang, Y.; Zhang, X.; Wang, S.; Lu, M.; Cui, H.; Kershaw, S.V.; Yu, W.W.; Rogach, A.L. Bright Orange Electroluminescence from Lead-Free Two-Dimensional Perovskites. ACS Energy Lett. 2018, 4, 242–248. [Google Scholar] [CrossRef]
- Hou, L.; Zhu, Y.H.; Zhu, J.R.; Li, C.Z. Tuning Optical Properties of Lead-Free 2D Tin-Based Perovskites with Carbon Chain Spacers. J. Phys. Chem. C 2019, 123, 31279–31285. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, A.F.; Wu, J.J.; Wang, C.Y.; Li, Z.L.; Hu, G.C.; Sui, S.Q.; She, J.X.; Meng, W.; Li, W.Q.; et al. Alkylamine Screening and Zinc Doping of Highly Luminescent 2D Tin-Halide Perovskites for LED Lighting. Mater. Adv. 2021, 2, 1320–1327. [Google Scholar] [CrossRef]
- Wang, S.X.; Popovic, J.; Burazer, S.; Portniagin, A.; Liu, F.Z.; Low, K.H.; Duan, Z.H.; Li, Y.X.; Xiong, Y.; Zhu, Y.M.; et al. Strongly Luminescent Dion-Jacobson Tin Bromide Perovskite Microcrystals Induced by Molecular Proton Donors Chloroform and Dichloromethane. Adv. Funct. Mater. 2021, 31, 2102182. [Google Scholar] [CrossRef]
- Qi, J.; Wang, S.; Portniagin, A.; Kershaw, S.V.; Rogach, A.L. Room Temperature Fabrication of Stable, Strongly Luminescent Dion-Jacobson Tin Bromide Perovskite Microcrystals Achieved through Use of Primary Alcohols. Nanomaterials 2021, 11, 2738. [Google Scholar] [CrossRef]
- Wang, S.X.; Kershaw, T.H.; Rogach, A.R. Bright and Stable Dion-Jacobson Tin Bromide Perovskite Microcrystals Realized by Primary Alcohol Dopants. Chem. Mater. 2021, 33, 5413–5421. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, B.B.; Mei, S.L.; Zhu, Y.X.; Hu, R.R.; Zou, J. Highly Luminescent Broadband Phosphors Based on Acid Solvent Coordinated Two-Dimensional Layered Tin-Based Perovskites. J. Mater. Chem. C 2022, 10, 3856–3862. [Google Scholar] [CrossRef]
- Mandal, A.; Roy, S.; Mondal, A.; Gupta, S.; Pal, B.; Bhattacharyya, S. Spacer Switched Two-Dimensional Tin Bromide Perovskites Leading to Ambient-Stable Near-Unity Photoluminescence Quantum Yield. J. Phys. Chem. Lett. 2022, 13, 9103–9113. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; Lin, J.T.; Hsu, C.S.; Chang, C.K.; Chiu, C.W.; Chen, H.M.; Chou, P.T. Strongly Coupled Tin-Halide Perovskites to Modulate Light Emission: Tunable 550-640 nm Light Emission (FWHM 36-80 nm) with a Quantum Yield of up to 6.4%. Adv. Mater. 2018, 30, 1706592. [Google Scholar] [CrossRef]
- Yao, R.; Lin, J.; Liu, K.; Xu, Y.; Xiao, B.; Zhao, J.; Guo, Z.; Liu, Q.; Yuan, W. Structure and Optical Properties of Sn-Based Halide Perovskites (C10H18N2)SnX4 (X = Cl, Br, I). ACS Omega 2024, 9, 22352–22359. [Google Scholar] [CrossRef]
- Lanzetta, L.; Marin-Beloqui, J.M.; Sanchez-Molina, I.; Ding, D.; Haque, S.A. Two-Dimensional Organic Tin Halide Perovskites with Tunable Visible Emission and Their Use in Light-Emitting Devices. ACS Energy Lett. 2017, 2, 1662–1668. [Google Scholar] [CrossRef]
- Yuan, F.; Zheng, X.; Johnston, A.; Wang, Y.K.; Zhou, C.; Dong, Y.; Chen, B.; Chen, H.; Fan, J.Z.; Sharma, G.; et al. Color-Pure Red Light-Emitting Diodes Based on Two-Dimensional Lead-Free Perovskites. Sci. Adv. 2020, 6, eabb0253. [Google Scholar] [CrossRef]
- Liang, H.; Yuan, F.; Johnston, A.; Gao, C.; Choubisa, H.; Gao, Y.; Wang, Y.K.; Sagar, L.K.; Sun, B.; Li, P.; et al. High Color Purity Lead-Free Perovskite Light-Emitting Diodes via Sn Stabilization. Adv. Sci. 2020, 7, 1903213. [Google Scholar] [CrossRef]
- Roy, C.R.; Zhou, Y.; Kohler, D.D.; Zhu, Z.; Wright, J.C.; Jin, S. Intrinsic Halide Immiscibility in 2D Mixed-Halide Ruddlesden–Popper Perovskites. ACS Energy Lett. 2022, 7, 3423–3431. [Google Scholar] [CrossRef]
- Li, S.; Jiang, Y.; Xu, J.; Wang, D.; Ding, Z.; Zhu, T.; Chen, B.; Yang, Y.; Wei, M.; Guo, R.; et al. High-Efficiency and Thermally Stable FACsPbI3 Perovskite Photovoltaics. Nature 2024, 635, 82–88. [Google Scholar] [CrossRef]
- Wu, L.; Li, R.; Wen, W.; Zou, Q.; Ye, H.; Li, J. Lead-free hybrid indium perovskites with near-unity PLQY and white light emission using an Sb3+doping strategy. Inorg. Chem. Front. 2023, 10, 3297–3306. [Google Scholar] [CrossRef]
- Li, X.; Xia, M.; Li, W.; Lu, P.; Zhang, X.; Xu, Y. Lead-free Halide Perovskites With ≈100% PLQY and Dual-Color Emission for White Light-Emitting Diodes. Laser Photonics Rev. 2024, 19, 2401084. [Google Scholar] [CrossRef]
- Webb, T.; Haque, S.A. A Comparison of Molecular Iodine Evolution on the Chemistry of Lead and Tin Perovskites. Energy Environ. Sci. 2024, 17, 3244–3269. [Google Scholar] [CrossRef]
- Sun, S.; Lu, M.; Gao, X.; Shi, Z.; Bai, X.; Yu, W.W.; Zhang, Y. 0D Perovskites: Unique Properties, Synthesis, and Their Applications. Adv. Sci. 2021, 8, 2102689. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef]
- Luangwanta, T.; Turren-Cruz, S.-H.; Masi, S.; Das Adhikari, S.; Recalde, I.B.; Zanatta, M.; Iglesias, D.; Rodríguez-Pereira, J.; Gené-Marimon, S.; Martinez-Ferrero, E.; et al. Enabling White Color Tunability in Complex 3D-printed Composites by Using Lead-Free Self-Trapped Exciton 2D Perovskite/Carbon Quantum Dot Inks. Nanoscale 2024, 16, 10262–10272. [Google Scholar] [CrossRef]
- Heo, Y.J.; Jang, H.J.; Lee, J.H.; Jo, S.B.; Kim, S.; Ho, D.H.; Kwon, S.J.; Kim, K.; Jeon, I.; Myoung, J.M.; et al. Enhancing Performance and Stability of Tin Halide Perovskite Light Emitting Diodes via Coordination Engineering of Lewis Acid-Base Adducts. Adv. Funct. Mater. 2021, 31, 2106974. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Lu, J.; Li, P.; Huang, Z.; Liang, G.; He, H.; Zhi, C. Constructing Static Two-Electron Lithium-Bromide Battery. Sci. Adv. 2024, 10, eadl0587. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Wang, F.; Cheng, Z.; Fang, Y.; Chang, Q.; Zhu, J.; Wang, L.; Wang, J.; Huang, W.; et al. Full-Frame and High-Contrast Smart Windows from Halide-Exchanged Perovskites. Nat. Commun. 2021, 12, 3360. [Google Scholar] [CrossRef]
- Triggs, C.T.; Ross, R.D.; Mihalyi-Koch, W.; Clewett, C.F.M.; Sanders, K.M.; Guzei, I.A.; Jin, S. Spacer Cation Design Motifs for Enhanced Air Stability in Lead-Free 2D Tin Halide Perovskites. ACS Energy Lett. 2024, 9, 1835–1843. [Google Scholar] [CrossRef]
- Bonomi, S.; Armenise, V.; Accorsi, G.; Colella, S.; Rizzo, A.; Fracassi, F.; Malavasi, L.; Listorti, A. The Effect of Extended Ball-Milling upon Three-Dimensional and Two-Dimensional Perovskite Crystals Properties. Appl. Sci. 2020, 10, 4775. [Google Scholar] [CrossRef]
- Zhang, X.; Munir, R.; Xu, Z.; Liu, Y.; Tsai, H.; Nie, W.; Li, J.; Niu, T.; Smilgies, D.M.; Kanatzidis, M.G.; et al. Phase Transition Control for High Performance Ruddlesden–Popper Perovskite Solar Cells. Adv. Mater. 2018, 30, 1707166. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, Y.; He, T.; Li, S.; Wang, H.; Chen, Y.; Yuan, M.; Chen, J. Orientation Regulation of Tin-Based Reduced-Dimensional Perovskites for Highly Efficient and Stable Photovoltaics. Adv. Funct. Mater. 2019, 29, 1807696. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, X.; Zhu, T.; Zhu, X.; Huang, L. Electron–Phonon Scattering in Atomically Thin 2D Perovskites. ACS Nano 2016, 10, 9992–9998. [Google Scholar] [CrossRef]
- Yang, B.; Mei, S.; He, H.; Zhu, Y.; Hu, R.; Zou, J.; Xing, G.; Guo, R. Lead Oxide Enables Lead Volatilization Pollution Inhibition and Phase Purity Modulation in Perovskite Quantum Dots Embedded Borosilicate Glass. J. Eur. Ceram. Soc. 2022, 42, 258–265. [Google Scholar] [CrossRef]
- Qu, R.; Gao, M.; Li, H.; Qi, X.; Liu, C.; Zhao, W.; Yan, J.; Zhang, Z. Hydrobromic acid-assisted size control of formamidinium lead bromide perovskite quantum dots at room temperature. Opt. Mater. 2021, 113, 110776. [Google Scholar] [CrossRef]
- Ji, S.; Yuan, X.; Ji, W.; Li, H.; Zhao, J.; Zhang, H. Near-unity photoluminescence quantum yield Mn-doped two-dimensional halide perovskite platelets via hydrobromic acid-assisted synthesis. J. Lumin. 2022, 245, 118790. [Google Scholar] [CrossRef]
- Xu, J.; Buin, A.; Ip, A.H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J.J.; et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081. [Google Scholar] [CrossRef]
- Chen, B.; Rudd, P.N.; Yang, S.; Yuan, Y.; Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48, 3842–3867. [Google Scholar] [CrossRef]
Year | Materials | Emission Peak Wavelength/nm | FWHM/nm | PL QY | Ref. |
---|---|---|---|---|---|
2019 | (OA)2SnBr4 | 600 | 136 | 95% | [13] |
2019 | (OAm)2SnI4 | 620 | 140 | 88% | [16] |
2019 | (RNH3)2SnBr4 | 612–628 | 126–156 | 1.94–61.08% | [17] |
2021 | (RNH3)2SnBr4:Zn | 580 | 137 | 85% | [18] |
2021 | ODASnBr4 | 570–608 | 126–135 | 88% | [19] |
2021 | ODASnBr4 | 572–601 | / | 88% | [20] |
2021 | ODASnBr4 | 610 | / | 86% | [21] |
2022 | ODASnBr4 | 586 | 180 | 98.22% | [22] |
2022 | (8N8)SnBr4 | 580 | 130 | 99.7% | [23] |
2022 | HA2+xSnI4+x | 598 | 126 | 99% | [14] |
2023 | OA2SnI4 | 655 | 160 | 63.6% | [15] |
2025 | ODASnBr4 | 567 | 114 | 99% | This work |
2025 | ODASnI4 | 604 | 115 | 17% | This work |
Samples | τ1/μs | Rel1/% | τ2/μs | Rel1/% | τave/μs |
---|---|---|---|---|---|
ODASnI4 | 2.51 | 56.73 | 20.09 | 43.27 | 10.12 |
ODASnBr4 | 4.70 | 48.10 | 23.19 | 51.90 | 14.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Y.; Yin, J.; Qiao, Y.; Zhao, J.; He, H.; Zhao, D.; Zhang, W.; Mei, S.; Guo, R. Gram-Scale Synthesis and Optical Properties of Self-Trapped-Exciton-Emitting Two-Dimensional Tin Halide Perovskites. Nanomaterials 2025, 15, 818. https://doi.org/10.3390/nano15110818
Xing Y, Yin J, Qiao Y, Zhao J, He H, Zhao D, Zhang W, Mei S, Guo R. Gram-Scale Synthesis and Optical Properties of Self-Trapped-Exciton-Emitting Two-Dimensional Tin Halide Perovskites. Nanomaterials. 2025; 15(11):818. https://doi.org/10.3390/nano15110818
Chicago/Turabian StyleXing, Yifeng, Jialin Yin, Yifei Qiao, Jie Zhao, Haiyang He, Danyang Zhao, Wanlu Zhang, Shiliang Mei, and Ruiqian Guo. 2025. "Gram-Scale Synthesis and Optical Properties of Self-Trapped-Exciton-Emitting Two-Dimensional Tin Halide Perovskites" Nanomaterials 15, no. 11: 818. https://doi.org/10.3390/nano15110818
APA StyleXing, Y., Yin, J., Qiao, Y., Zhao, J., He, H., Zhao, D., Zhang, W., Mei, S., & Guo, R. (2025). Gram-Scale Synthesis and Optical Properties of Self-Trapped-Exciton-Emitting Two-Dimensional Tin Halide Perovskites. Nanomaterials, 15(11), 818. https://doi.org/10.3390/nano15110818