Preparation and Luminescence Property Study of Red-Emitting Na3.6Y1.8(PO4)3:Eu3+,Li+/K+ Phosphors with Excellent Thermal Stability for Light-Conversion Application
Abstract
1. Introduction
2. Experimental Section
2.1. Sample Synthesis
2.2. Characterization
3. Results and Discussion
3.1. XRD Analysis
3.2. SEM and TEM Analysis
3.3. DRS Analysis
3.4. Luminescence Properties of Na3.6Y1.8(PO4)3:Eu3+ Phosphors
3.5. Luminescence Properties of Li+/K+ Substitution Na3.6Y1.05(PO4)3:0.75Eu3+ Phosphors
3.6. Thermal Stability, CIE Parameters and Application
4. Conclusions
- (i)
- Confirmed by XRD and EDS techniques, the calcination temperature was found to be key for the formation of the as-obtained Na3.6Y1.8(PO4)3:Eu3+ phosphors, and thus, various temperatures for calcinations were examined for better control under the reported reaction conditions.
- (ii)
- By a 393nm n-UV excitation, the as-prepared Na3.6Y1.8−x(PO4)3:xEu3+ phosphors exhibited red emission with the highest peak located at ~620 nm and a maximum quantum yield of 81.26%. Interestingly, the intensity of the 5D0 → 7F4 emission peak at ~705 nm of the phosphors is significant, making the emission spectra more accurately match the absorption of plant pigments. The representative Na3.6Y1.05(PO4)3:0.75Eu3+ sample exhibits a non-thermal quenching effect along with excellent thermal stability (97.5%@473 K).
- (iii)
- XRD and SEM analysis revealed that the crystal structure and morphology of the Na3.6Y1.05(PO4)3:0.75Eu3+ sample remained unaltered in response to a tiny amount of Li+/K+ doping. By partial substitution of Na+ by Li+/K+ ions to change the crystal field and reduce the symmetry around Eu3+, the luminescence intensity of Na3.6Y1.05(PO4)3:0.75Eu3+ phosphor is significantly increased by 23.24% and 18.29%, and the highest quantum yields reach 99.85% and 96.29%, respectively. Furthermore, a red-emission plant growth LED model was established using a 395 nm n-UV chip coated with Na3.5Li0.10Y1.05(PO4)3:0.75Eu3+ phosphors, in which the emission spectrum could greatly comply with the PR absorption spectrum of plants.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gu, S.; Xia, M.; Zhou, C.; Kong, Z.; Molokeev, M.S.; Liu, L.; Wong, W.-Y.; Zhou, Z. Red shift properties, crystal field theory and nephelauxetic effect on Mn4+-doped SrMgAl10-yGayO17 red phosphor for plant growth LED light. Chem. Eng. J. 2020, 396, 125208. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, D.; Zhang, R.-J.; Fan, Y.-P.; Yao, Q.-X.; Zhu, S.-Y. A selective replacement strategy to a deep-red phosphor for plant growth and optical temperature sensing. J. Alloys Compd. 2022, 924, 166510. [Google Scholar] [CrossRef]
- Fang, M.-H.; De Guzman, G.N.A.; Bao, Z.; Majewska, N.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S.M.; Yang, C.-W.; Lu, K.-M.; et al. Ultra-high-efficiency near-infrared Ga2O3:Cr3+ phosphor and controlling of phytochrome. J. Mater. Chem. C 2020, 8, 11013–11017. [Google Scholar] [CrossRef]
- Cao, R.; Chen, T.; Ren, Y.; Chen, T.; Ao, H.; Li, W.; Zheng, G. Synthesis and photoluminescence properties of Ca2LaTaO6:Mn4+ phosphor for plant growth LEDs. J. Alloys Compd. 2019, 780, 749–755. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, M.; Jin, Y.; Mei, Z.; Gao, J.; Huo, J.; Wang, Q. Equivalent cation substitution-triggered highly efficient Mn4+ red emission in double-perovskite type (Ba, Sr)2(Gd, La, Y, Lu)(Nb, Sb)O6:Mn4+ solid solution phosphors and photophysical studies. Chem. Eng. J. 2021, 424, 130571. [Google Scholar] [CrossRef]
- Wu, D.; Wu, H.; Xiao, Y.; Dong, X.; Wang, Y.; Zhou, W.; Liu, Y.; Zhang, L. Highly efficient and thermally stable far-red-emitting phosphors for plant-growth lighting. J. Lumin. 2022, 244, 118750. [Google Scholar] [CrossRef]
- Shi, L.; Han, Y.-J.; Ji, Z.-X.; Zhang, Z.-W. Highly efficient and thermally stable CaYMgSbO6:Mn4+ double perovskite red phosphor for indoor plant growth. J. Mater. Sci. Mater. Electron. 2019, 30, 3107–3113. [Google Scholar] [CrossRef]
- Han, Y.J.; Wang, S.; Liu, H.; Shi, L.; Zhang, W.X.; Cai, L.K.; Mao, Z.Y.; Wang, D.J.; Mu, Z.F.; Zhang, Z.W.; et al. Mn4+ doped tetratungstate Sr9Gd2W4O24 far-red phosphor: Synthesis, luminescence properties, and potential applications in indoor plant cultivation. J. Lumin. 2020, 220, 117027. [Google Scholar] [CrossRef]
- Li, G.; Liu, G.; Mao, Q.; Du, G.; Li, X.; Zhu, Y.; Yang, T.; Yu, H.; Ji, Z.; Zhong, J. Novel non-rare-earth red-emitting phosphor Li4AlSbO6:Mn4+ for plant growth: Crystal structure, luminescence properties and its LED device. Ceram. Int. 2021, 47, 27609–27616. [Google Scholar] [CrossRef]
- Wu, Y.; Zhuang, Y.; Lv, Y.; Ruan, K.; Xie, R.-J. A high-performance non-rare-earth deep-red-emitting Ca14−xSrxZn6Al10O35:Mn4+ phosphor for high-power plant growth LEDs. J. Alloys Compd. 2019, 781, 702–709. [Google Scholar] [CrossRef]
- Yang, C.; Liu, W.; You, Q.; Zhao, X.; Liu, S.; Xue, L.; Sun, J.; Jiang, X. Recent Advances in Light-Conversion Phosphors for Plant Growth and Strategies for the Modulation of Photoluminescence Properties. Nanomaterials 2023, 13, 1715. [Google Scholar] [CrossRef] [PubMed]
- Bedyal, A.K.; Kunti, A.K.; Kumar, V.; Swart, H.C. Effects of cationic substitution on the luminescence behavior of Dy3+ doped orthophosphate phosphor. J. Alloys Compd. 2019, 806, 1127–1137. [Google Scholar] [CrossRef]
- Nie, C.-K.; Zhao, D.; Duan, P.-G.; Fan, Y.-C.; Zhang, L.; Zhang, R.-J. Structure twinning and photoluminescence properties of sodium dysprosium phosphate Na3Dy(PO4)2. J. Mater. Sci. Mater. Electron. 2018, 29, 1664–1671. [Google Scholar] [CrossRef]
- Yu, M.-H.; Zhao, D.; Zhang, R.-J.; Yao, Q.-X.; Jia, L. Dual luminescent peaks, energy transfer and temperature sensor properties of a new Eu2+/Mn2+ co-doped phosphor. J. Lumin. 2023, 257, 119760. [Google Scholar] [CrossRef]
- Kim, Y.H.; Arunkumar, P.; Kim, B.Y.; Unithrattil, S.; Kim, E.; Moon, S.-H.; Hyun, J.Y.; Kim, K.H.; Lee, D.; Lee, J.-S.; et al. A zero-thermal-quenching phosphor. Nat. Mater. 2017, 16, 543–550. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, X.; Song, Y.; Xu, Y.; Ni, J.; Zhang, H.; Zhao, T.; Shi, M. Enhanced green emissions and excellent thermal stability of Ce3+-Tb3+ co-activated Na3.6Y1.8(PO4)3 phosphors via high efficiency energy transfer. Optik 2023, 288, 171207. [Google Scholar] [CrossRef]
- Krutyak, N.; Spassky, D.; Nagirnyi, V.; Antropov, A.V.; Deyneko, D.V. Novel NASICON-type Na3.6Y1.8−x(PO4)3:xDy3+ phosphor: Structure and luminescence. Opt. Mater. 2021, 122, 111738. [Google Scholar] [CrossRef]
- Farooq, U.; Sun, X.; Zhao, Z.; Janjua, R.A.; Gao, C.; Dai, R.; Wang, Z.; Zhang, Z. Thermally stable Na3.6Y1.8(PO4)3:Eu3+ phosphor, luminescent properties and application in WLEDs. J. Alloys Compd. 2020, 821, 153513. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, W.; Wang, X.; Huang, X.; Du, H.; Lin, J. Enhancing the photoluminescence performance of Ca5(PO4)2SiO4:Re3+ (Re = Eu, Sm) phosphors with A3+ (A = La, Bi) codoping and white light-emitting diode application. Ceram. Int. 2022, 48, 13080–13089. [Google Scholar] [CrossRef]
- Huang, X.; Wang, T.; Zhang, W.; Zhao, Z.; Wang, X.; Gao, X. Effect of Partial Ca2+ Substitution with Ln3+ (Ln = Y, La) on Luminescence Enhancement of Ca18.62Zn2(PO4)14:0.38Dy3+ White-Emitting Phosphor for White Light-Emitting Diodes. ACS Appl. Electron. Mater. 2021, 3, 4472–4483. [Google Scholar] [CrossRef]
- Ma, Y.-H.; Gao, X.; Zhang, W.-T.; Yang, Z.-R.; Zhao, Z.; Qu, C. Enhanced red luminescence of Ca3Si2−xMxO7:Eu3+ (M = Al, P) phosphors via partial substitution of Si4+ for applications in white light-emitting diodes. Rare Met. 2024, 43, 736–748. [Google Scholar] [CrossRef]
- Byeon, S.-H.; Ko, M.-G.; Park, J.-C.; Kim, D.-K. Low-Temperature Crystallization and Highly Enhanced Photoluminescence of Gd2−xYxO3:Eu3+ by Li Doping. Chem. Mater. 2002, 14, 603–608. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, W.; Ren, B.; Zhong, L.; Xu, Y. Effects of Li+ co-doping on the concentration quenching threshold and luminescence of GdVO4:Eu3+ nanophosphors. Ionics 2017, 23, 869–875. [Google Scholar] [CrossRef]
- Zhu, H.; Feng, S.; Kong, Z.; Huang, X.; Peng, L.; Wang, J.; Wong, W.-Y.; Zhou, Z.; Xia, M. Bi3+ occupancy rearrangement in K2−xAxMgGeO4 phosphor to achieve ultra-broad-band white emission based on alkali metal substitution engineering. Appl. Surf. Sci. 2021, 563, 150252. [Google Scholar] [CrossRef]
- Han, B.; Liu, B.; Dai, Y.; Zhang, J.; Shi, H. Alkali metal ion substitution induced luminescence enhancement of NaLaMgWO6:Eu3+ red phosphor for white light-emitting diodes. Ceram. Int. 2019, 45, 3419–3424. [Google Scholar] [CrossRef]
- Unal, F.; Kaya, F.; Kazmanli, K. Effects of dopant rate and calcination parameters on photoluminescence emission of Y2O3:Eu3+ phosphors: A statistical approach. Ceram. Int. 2019, 45, 17818–17825. [Google Scholar] [CrossRef]
- Wei, D.; Yang, X.; Liu, Y.; Kim, J.H.; Park, S.H.; Seo, H.J.; Lee, B.R. Clarifying concentration quenching mechanisms by lattice site-occupation and luminescence kinetics of Eu3+-activated Cs2Mg2Mo3O12. J. Mater. Chem. C 2023, 11, 13548–13560. [Google Scholar] [CrossRef]
- Charak, I.; Manhas, M.; Bedyal, A.K.; Singh, S.; Srivastava, A.; Swart, H.C.; Kumar, V. Structural and spectral studies of highly pure red-emitting Ca3B2O6:Eu3+ phosphors for white light emitting diodes. J. Alloys Compd. 2021, 869, 159363. [Google Scholar] [CrossRef]
- Yang, Z.; Ye, M.; Sun, C.; Yang, S.; Zheng, Y.; Xu, D.; Sun, J. Structural and luminescence characterization of red-emitting Li6SrLa2Nb2O12:Eu3+ phosphors with excellent thermal stability. J. Mol. Struct. 2023, 1292, 136071. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhu, H.; Huang, X.; She, Y.; Zhong, Y.; Wang, J.; Liu, M.; Li, W.; Xia, M. Anti-thermal-quenching, color-tunable and ultra-narrow-band cyan green-emitting phosphor for w-LEDs with enhanced color rendering. Chem. Eng. J. 2022, 433, 134079. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wei, G.; Yang, Y.; He, S.; Li, J.; Shi, Y.; Li, R.; Zhang, J.; Li, P. Highly Efficient and Stable Near-Infrared Broadband Garnet Phosphor for Multifunctional Phosphor-Converted Light-Emitting Diodes. Adv. Opt. Mater. 2022, 10, 2200415. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, C.; Liu, S.; Wang, Y.; Hu, R.; You, Q.; Liu, W.; Liu, M.; Yang, S.; Jiang, X. Enhanced photoluminescence of K7CaY2(B5O10)3:Eu3+, Sm3+/Gd3+ phosphors through energy transfer and their applications in LED lights for plant growth. J. Alloys Compd. 2023, 969, 172471. [Google Scholar] [CrossRef]
- Leng, Z.; Zhang, D.; Bai, H.; He, H.; Qing, Q.; Zhao, J.; Tang, Z. A zero-thermal-quenching perovskite-like phosphor with an ultra-narrow-band blue-emission for wide color gamut backlight display applications. J. Mater. Chem. C 2021, 9, 13722–13732. [Google Scholar] [CrossRef]
- Kumari, C.; Manam, J.; Sharma, S.K. Strong red emission in double perovskite Sr3LiSbO6:Eu3+ phosphor with high color purity for solid-state lighting applications. Mater. Sci. Semicond. Process 2023, 158, 107385. [Google Scholar] [CrossRef]
- Liu, M.; Yang, C.; Liu, W.; Zhou, X.; Liu, S.; You, Q.; Jiang, X. Synthesis of Bi3+ and Eu3+ co-doped Na4CaSi3O9 blue-red light tunable emission phosphors for inducing plant growth. Ceram. Int. 2024, 50, 9058–9069. [Google Scholar] [CrossRef]
- Meena, M.L.; Lu, C.-H.; Som, S.; Chaurasiya, R.; Lin, S.D. Highly efficient and thermally stable Eu3+ activated phosphate based phosphors for wLEDs: An experimental and DFT study. J. Alloys Compd. 2022, 895, 162670. [Google Scholar] [CrossRef]
- Wang, Y.; Ke, Y.; Chen, S.; Luo, J.; Shu, S.; Gao, J.; Deng, B.; Yu, R. Luminescence investigation of red-emitting Sr2MgMoO6:Eu3+ phosphor for visualization of latent fingerprint. J. Colloid. Interface Sci. 2021, 583, 89–99. [Google Scholar] [CrossRef]
- Ling-Hu, P.; Guo, X.; Hu, J.; Deng, C.; Cui, R. Anomalous 5D0→7F4 Transition of Eu3+-Doped BaLaGaO4 Phosphors for WLEDs and Plant Growth Applications. Adv. Opt. Mater. 2024, 12, 2301760. [Google Scholar] [CrossRef]
- Li, J.; Lin, L.; Jiang, W.; Zhang, Z.; Zhang, X.; Kuang, M.; Zhuang, J.; Zhang, Q.; Ni, H.; Shi, J. A terbium-sensitized Eu3+-activated deep-red-emitting phosphor for plant growth LED application. J. Alloys Compd. 2021, 885, 160966. [Google Scholar] [CrossRef]
- Judd, B.R. Optical Absorption Intensities of Rare-Earth Ions. Phys. Rev. 1962, 127, 750–761. [Google Scholar] [CrossRef]
- Voiculescu, A.M.; Hau, S.; Stanciu, G.; Gheorghe, C. Effects of Eu3+ concentration on the thermoluminescence properties of narrow-band red-emitting Eu3+: SrLaGaO4 phosphor. J. Alloys Compd. 2023, 958, 170507. [Google Scholar] [CrossRef]
- Wu, M.; Chen, B.; He, C.; Huang, X.; Liu, Q.; Min, X.; Mi, R.; Wu, X.; Fang, M.; Liu, Y.G.; et al. A high quantum yield red phosphor NaGdSiO4: Eu3+ with intense emissions from the 5D0→7F1,2 transition. Ceram. Int. 2022, 48, 23213–23223. [Google Scholar] [CrossRef]
- Dexter, D.L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21, 836–850. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, W.; Wang, X.; Huang, X.; Zhao, Z. Charge compensation effects of alkali metal ions M+ (Li+, Na+, K+) on luminescence enhancement in red-emitting Ca3Si2O7:Eu3+ phosphors. J. Alloys Compd. 2022, 893, 162265. [Google Scholar] [CrossRef]
- Sarode, N.; Parauha, Y.R.; Dhoble, N.; Dhoble, S. Tunable emission, energy transfer and cation substitution in the Li2Sr2Al(PO4)3: Dy3+, Eu3+, Na+ phosphor for WLEDs application. Mater. Today Commun. 2023, 37, 107225. [Google Scholar] [CrossRef]
- Wi, S.W.; Seo, J.W.; Lee, Y.D.; Choi, J.H.; Lee, Y.S.; Chung, J.S. Cation substitution induced structural phase transitions and luminescence properties of Eu3+-doped A2LaNbO6 (A = Ba, Sr, and Ca) double perovskite. J. Alloys Compd. 2024, 976, 173102. [Google Scholar] [CrossRef]
- Dang, P.; Li, G.; Yun, X.; Zhang, Q.; Liu, D.; Lian, H.; Shang, M.; Lin, J. Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs: Non-concentration quenching and negative thermal expansion. Light. Sci. Appl. 2021, 10, 29. [Google Scholar] [CrossRef]
y | 0 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 |
QY (%) | 81.26 | 84.90 | 99.85 | 92.91 | 74.87 | 81.60 |
z | 0 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 |
QY (%) | 81.26 | 76.35 | 84.79 | 92.04 | 96.29 | 90.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Q.; Zhou, X.; Yang, C.; Liu, M.; Liu, W.; Li, J.; Jiang, X. Preparation and Luminescence Property Study of Red-Emitting Na3.6Y1.8(PO4)3:Eu3+,Li+/K+ Phosphors with Excellent Thermal Stability for Light-Conversion Application. Nanomaterials 2024, 14, 1721. https://doi.org/10.3390/nano14211721
You Q, Zhou X, Yang C, Liu M, Liu W, Li J, Jiang X. Preparation and Luminescence Property Study of Red-Emitting Na3.6Y1.8(PO4)3:Eu3+,Li+/K+ Phosphors with Excellent Thermal Stability for Light-Conversion Application. Nanomaterials. 2024; 14(21):1721. https://doi.org/10.3390/nano14211721
Chicago/Turabian StyleYou, Qi, Xuan Zhou, Chengxiang Yang, Mu Liu, Wei Liu, Jinkai Li, and Xuchuan Jiang. 2024. "Preparation and Luminescence Property Study of Red-Emitting Na3.6Y1.8(PO4)3:Eu3+,Li+/K+ Phosphors with Excellent Thermal Stability for Light-Conversion Application" Nanomaterials 14, no. 21: 1721. https://doi.org/10.3390/nano14211721
APA StyleYou, Q., Zhou, X., Yang, C., Liu, M., Liu, W., Li, J., & Jiang, X. (2024). Preparation and Luminescence Property Study of Red-Emitting Na3.6Y1.8(PO4)3:Eu3+,Li+/K+ Phosphors with Excellent Thermal Stability for Light-Conversion Application. Nanomaterials, 14(21), 1721. https://doi.org/10.3390/nano14211721