Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = alkali metal ion substitution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3889 KiB  
Article
Effects of Organic Acidic Products from Discharge-Induced Decomposition of the FRP Matrix on ECR Glass Fibers in Composite Insulators
by Dandan Zhang, Zhiyu Wan, Kexin Shi, Ming Lu and Chao Gao
Polymers 2025, 17(11), 1540; https://doi.org/10.3390/polym17111540 - 31 May 2025
Viewed by 594
Abstract
This study investigates the degradation mechanisms of fiber-reinforced polymer (FRP) matrices in composite insulators under partial discharge (PD) conditions. The degradation products may further cause deterioration of the electrical and chemical resistance (ECR) glass fibers. Using pyrolysis–gas chromatography-mass spectrometry (PY-GC-MS) and high-performance liquid [...] Read more.
This study investigates the degradation mechanisms of fiber-reinforced polymer (FRP) matrices in composite insulators under partial discharge (PD) conditions. The degradation products may further cause deterioration of the electrical and chemical resistance (ECR) glass fibers. Using pyrolysis–gas chromatography-mass spectrometry (PY-GC-MS) and high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS-MS), the thermal degradation gas and liquid products of the degraded FRP matrix were analyzed, revealing the presence of organic acids. These acids form when the epoxy resin’s cross-linked bonds break at high temperatures, generating anhydrides that hydrolyze into carboxylic acids in the presence of moisture. The hydrolyzation process is accelerated by hydroxyl radicals produced during PD. The resulting carboxylic acids deteriorate the glass fibers within the FRP matrix by degrading surface coupling agents and reacting with the alkali metal–silica network, leading to the substitution and precipitation of metal ions. Organic acids, particularly carboxylic acids, were found to have a more severe deteriorating effect on glass fibers compared to inorganic acids, with high temperatures exacerbating this process. These findings provide critical insights into the deterioration mechanisms of FRP under operational conditions, offering valuable guidance for optimizing manufacturing processes and enhancing the longevity of composite insulators. Full article
(This article belongs to the Special Issue New Insights into Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

14 pages, 3055 KiB  
Article
Ion Substitution-Induced Distorted MOF Lattice with Deviated Energy and Dielectric Properties for Quasi-Solid-State Ion Conductor
by Yike Huang, Yun Zheng, Yan Guo, Qi Zhang, Yingying Shen, Hebin Zhang, Yinan Liu, Yihao Zheng, Pingshan Jia, Rong Chen, Lifen Long, Zhiyuan Zhang, Congcong Zhang, Yuanhang Hou, Kunye Yan, Ziyu Huang, Manting Zhang, Jiangmin Jiang, Shengyang Dong, Wen Lei and Huaiyu Shaoadd Show full author list remove Hide full author list
Nanomaterials 2025, 15(4), 274; https://doi.org/10.3390/nano15040274 - 11 Feb 2025
Viewed by 881
Abstract
Solid-state electrolytes are currently receiving increasing interest due to their high mechanical strength and chemical stability for safe battery construction. However, their poor ion conduction and unclear conduction mechanism need further improvement and exploration. This study focuses on a hybrid solid-state electrolyte containing [...] Read more.
Solid-state electrolytes are currently receiving increasing interest due to their high mechanical strength and chemical stability for safe battery construction. However, their poor ion conduction and unclear conduction mechanism need further improvement and exploration. This study focuses on a hybrid solid-state electrolyte containing MOF-based scaffolds, using metal salts as the conductor. In this paper, we employ an ion substitution strategy to manipulate the scaffold structure at the lattice level by replacing hydrogen with larger alkali cations. The research systematically presents how changes in the lattice affect the physical and chemical properties of MOFs and emphasizes the role of scaffold–salt interactions in the evolution of ion conduction. The results reveal that long range-ordered structural distortion can enhance permittivity at 1 Hz, from 58 ohms to more than 10 M ohms, which can boost ion pairs dissociation and improve the transference number from 4.7% to 22.6%. Defects in the lattice can help stabilize the intermediate state in the charge transfer process and lower the corresponding impedance from 2.6 MΩ to 559 Ω. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

12 pages, 4154 KiB  
Article
Defect-Mediated Energy Transfer Mechanism by Modulating Lattice Occupancy of Alkali Ions for the Optimization of Upconversion Luminescence
by Rongyao Gao, Yuqian Li, Yuhang Zhang, Limin Fu and Luoyuan Li
Nanomaterials 2024, 14(23), 1969; https://doi.org/10.3390/nano14231969 - 7 Dec 2024
Cited by 1 | Viewed by 1269
Abstract
The performance optimization of photoluminescent (PL) materials is a hot topic in the field of applied materials research. There are many different crystal defects in photoluminescent materials, which can have a significant impact on their optical properties. The luminescent properties and chemical stability [...] Read more.
The performance optimization of photoluminescent (PL) materials is a hot topic in the field of applied materials research. There are many different crystal defects in photoluminescent materials, which can have a significant impact on their optical properties. The luminescent properties and chemical stability of materials can be effectively improved by adjusting lattice defects in crystals. We systematically studied the effect of doping ions on the energy transfer upconversion mechanism in different defect crystals by changing the matrix alkali metal ions. Meanwhile, the influence mechanism of crystal defect distribution on luminescence performance is explored by adjusting the ratio of Na–Li. The PL spectra indicate that changing the alkaline ions significantly affects the luminescence performance and efficiency of UCNPs. The change in ion radius leads to substitution or gap changes in the main lattice, which may alter the symmetry and strength of the crystal field around doped RE ions, thereby altering the UCL performance. Additionally, we demonstrated the imaging capabilities of the synthesized upconversion nanoparticles (UCNPs) in cellular environments using fluorescence microscopy. The results revealed that Na0.9Li0.1LuF4–Yb, Er nanoparticles exhibited significantly enhanced fluorescence intensity in cell imaging compared to other compositions. We further investigated the mechanism by which structural defects formed by doping ions in UCNPs with different alkali metals affect energy transfer upconversion (ETU). This work emphasizes the importance of defect regulation in the ETU mechanism to improve the limitations of crystal structure on the luminescence performance and promote the future application of upconversion nanomaterials, which will provide important theoretical references for the exploration of high-performance luminescent materials in the future. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

14 pages, 11822 KiB  
Article
Preparation and Luminescence Property Study of Red-Emitting Na3.6Y1.8(PO4)3:Eu3+,Li+/K+ Phosphors with Excellent Thermal Stability for Light-Conversion Application
by Qi You, Xuan Zhou, Chengxiang Yang, Mu Liu, Wei Liu, Jinkai Li and Xuchuan Jiang
Nanomaterials 2024, 14(21), 1721; https://doi.org/10.3390/nano14211721 - 29 Oct 2024
Cited by 2 | Viewed by 1087
Abstract
A series of red-emitting phosphors, Na3.6Y1.8−x(PO4)3:xEu3+, have been synthesized by a high-temperature solid-phase method. The impact of the partial Li+/K+ ion substitution on the crystal structure and photoluminescence (PL) performance [...] Read more.
A series of red-emitting phosphors, Na3.6Y1.8−x(PO4)3:xEu3+, have been synthesized by a high-temperature solid-phase method. The impact of the partial Li+/K+ ion substitution on the crystal structure and photoluminescence (PL) performance of Na3.6Y1.05(PO4)3:0.75Eu3+ phosphor have been investigated. Various techniques have been used for characterization of the as-obtained materials. X-ray diffraction (XRD) analysis was utilized to confirm the composites of these samples, and the morphology and element distribution were examined by scanning electron microscope (SEM) and transmission electron microscope (TEM). This study found that the developed Na3.6Y1.8−x(PO4)3:xEu3+ phosphors exhibited a prominent emission peak at ~620 nm when excited at 393 nm, which corresponded to 5D07F2 transitions of Eu3+ ions. Furthermore, the robust emission peak at ~705 nm (5D07F4) of these phosphors enables a better match with plant pigment absorption. Beyond that, the partial substitution of Li+/K+ ions probably changed the crystal structure, and reduces the symmetry around Eu3+, leading to significantly enhanced luminous intensities by 23.24% and 18.29%, with the highest quantum yields (QYs) reaching 99.85% and 96.29%, respectively. Additionally, the prepared phosphors show non-thermal quenching and superior thermal stability at elevated temperatures from 298 to 473 K. These findings and results suggest that Li⁺/K⁺-substituted Na3.6Y1.05(PO₄)₃:0.75Eu3⁺ phosphors can serve as promising red-emitting phosphors for plant lighting applications. Full article
Show Figures

Figure 1

8 pages, 905 KiB  
Article
Location of Carbonate Ions in Metal-Doped Carbonated Hydroxylapatites
by Claude H. Yoder and Julia T. Goodman
Minerals 2023, 13(10), 1272; https://doi.org/10.3390/min13101272 - 29 Sep 2023
Cited by 1 | Viewed by 1196
Abstract
The environment model for the description of the location of carbonate ions in apatites predicts that approximately half of the carbonate occupies the apatite channel. This model relies on the influence of entities surrounding the carbonate on its IR spectrum and can be [...] Read more.
The environment model for the description of the location of carbonate ions in apatites predicts that approximately half of the carbonate occupies the apatite channel. This model relies on the influence of entities surrounding the carbonate on its IR spectrum and can be used to determine how various substituents affect the location and structure of that ion. Careful deconvolution (peak-fitting) of the asymmetric carbonate IR region was used to determine the percentage of A-type (channel) ions, A′-type (channel with either a Ca2+ vacancy or substitution of Na+ for Ca2+) ions, and B-type (substitution for phosphate) ions. In our previous applications of this model, we have looked at the effect of alkali metal ions, such as sodium, lithium, and potassium, the ammonium ion, and the rare earth europium ion. In the present work, we explore the incorporation of the first-row transition metal ions and find that they have little effect on the location of the carbonate ion. Like the un-substituted carbonated apatite, these apatites contain about half of the carbonate in the channel, at least in derivatives that contain up to half a mole of the metal ion per mole of apatite. Attempts to incorporate greater amounts of metal ions by aqueous ion-combination reactions generally lead to lower-resolution XRD patterns and IR spectra that produce greater uncertainties in the peak-fitting modeling. Full article
(This article belongs to the Special Issue Mineral-Related Oxo-Salts: Synthesis and Structural Crystallography)
Show Figures

Figure 1

15 pages, 4417 KiB  
Article
Substantial Copper (Cu2+) Uptake by Metakaolin-Based Geopolymer and Its Resistance to Acid Leaching and Ion Exchange
by Nenad Grba, Cyrill Grengg, Mirjana Petronijević, Martin Dietzel and Andre Baldermann
Polymers 2023, 15(8), 1971; https://doi.org/10.3390/polym15081971 - 21 Apr 2023
Cited by 5 | Viewed by 3112
Abstract
Geopolymers are inorganic, chemically resistant aluminosilicate-based binding agents, which remove hazardous metal ions from exposed aqueous media. However, the removal efficiency of a given metal ion and the potential ion remobilization have to be assessed for individual geopolymers. Therefore, copper ions (Cu2+ [...] Read more.
Geopolymers are inorganic, chemically resistant aluminosilicate-based binding agents, which remove hazardous metal ions from exposed aqueous media. However, the removal efficiency of a given metal ion and the potential ion remobilization have to be assessed for individual geopolymers. Therefore, copper ions (Cu2+) were removed by a granulated, metakaolin-based geopolymer (GP) in water matrices. Subsequent ion exchange and leaching tests were used to determine the mineralogical and chemical properties as well as the resistance of the Cu2+-bearing GPs to corrosive aquatic environments. Experimental results indicate the pH of the reacted solutions to have a significant impact on the Cu2+ uptake systematics: the removal efficiency ranged from 34–91% at pH 4.1–5.7 up to ~100% at pH 11.1–12.4. This is equivalent to Cu2+ uptake capacities of up to 193 mg/g and 560 mg/g in acidic versus alkaline media. The uptake mechanism was governed by Cu2+-substitution for alkalis in exchangeable GP sites and by co-precipitation of gerhardtite (Cu2(NO3)(OH)3) or tenorite (CuO) and spertiniite (Cu(OH)2). All Cu-GPs showed excellent resistance to ion exchange (Cu2+ release: 0–2.4%) and acid leaching (Cu2+ release: 0.2–0.7%), suggesting that tailored GPs have a high potential to immobilize Cu2+ ions from aquatic media. Full article
(This article belongs to the Special Issue Application of Polymer Materials in Water Treatment)
Show Figures

Graphical abstract

9 pages, 1344 KiB  
Article
Preliminary Data on Geochemical Characteristics of Major and Trace Elements in Typical Biominerals: From the Perspective of Human Kidney Stones
by Yu Tian, Guilin Han, Jie Zeng, Qian Zhang, Lifang Xu, Ke Liu, Chunlei Xiao, Lulin Ma and Ye Zhao
Minerals 2021, 11(12), 1396; https://doi.org/10.3390/min11121396 - 10 Dec 2021
Cited by 10 | Viewed by 3704
Abstract
The chemical composition of biominerals is essential for understanding biomineral formation and is regarded as an attractive subject in bio-mineralogical research on human kidney stones (urinary calculi). In order to obtain more geochemically interpreted data on biogenic minerals, mineralogical compositions and major and [...] Read more.
The chemical composition of biominerals is essential for understanding biomineral formation and is regarded as an attractive subject in bio-mineralogical research on human kidney stones (urinary calculi). In order to obtain more geochemically interpreted data on biogenic minerals, mineralogical compositions and major and trace element concentrations of sixty-six kidney stone samples derived from kidney stone removal surgeries were measured. Infrared spectroscopy results showed that calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) were the two main mineral components of kidney stones. Geochemical results indicated that major and trace element concentrations were present in the following order: Ca > Mg > Na > K > Zn > Fe > Pb > Ba > Cu > Ti > Mo > Cd > Cr. With the exception of Ca, Mg was the second-most abundant element. Zn exhibited higher concentrations relative to other trace elements, which suggests a potential substitution of calcium by metal ions with a similar charge and radius rather than by metals in kidney stone formation. Pb appeared in significantly higher concentrations than in previous studies, which indicates Pb enrichment in the environment. In order to discern multi-element relationships within kidney stones, principal component analysis was applied. Three principal components (PCs, eigenvalues >1) were extracted to explain 64.4% of the total variance. The first component exhibited positively correlated Na-Zn-Cr-Mo-Cd-Pb, while the second component exhibited more positively weighted Mg-K-Ba-Ti. Fe-Cu demonstrated a positive correlation in the third component. This study suggests that Ca exhibits a preference for uptake by oxalates during human urinary stone crystallization, while other alkali metals and alkaline earth metals precipitate with phosphate. Full article
(This article belongs to the Special Issue Biominerals and Bio-Inspired Materials)
Show Figures

Figure 1

9 pages, 2939 KiB  
Article
Prediction of Sodium Substitution Sites in Octacalcium Phosphate: The Relationships of Ionic Pair Ratios in Reacting Solutions
by Yuki Sugiura and Masanori Horie
Ceramics 2021, 4(2), 240-248; https://doi.org/10.3390/ceramics4020018 - 18 May 2021
Cited by 2 | Viewed by 3024
Abstract
Octacalcium phosphate (OCP) is widely used in biomaterial fabrication by virtue of its unique crystal structure and low environmental loading. Although various ion and molecule substitution methods into the OCP unit lattice have been introduced, it remains unclear which factors and mechanisms dominate [...] Read more.
Octacalcium phosphate (OCP) is widely used in biomaterial fabrication by virtue of its unique crystal structure and low environmental loading. Although various ion and molecule substitution methods into the OCP unit lattice have been introduced, it remains unclear which factors and mechanisms dominate the substitution process. Experimental studies have indicated that Na alkali metal ions are substituted at the P3 PO4 conjugated site in acidic to weakly acidic conditions and the P5 PO4 conjugated site in neutral to weak basic conditions. Ionic species calculation methods have indicated that the pair ratios of Na and HPO42− (NaHPO4) are small in acidic reacting solutions but large under weakly basic conditions. Consequently, the roles played by NaHPO4 and ionic pair formation processes are thought to dominate ion and molecule substitution into the OCP unit lattice. Such ionic pair formation strongly inhibits dicarboxylic acid substitution into the OCP unit lattice due to the replacement of the Ca ion, which conjugates P5 PO4 as an anchor of dicarboxylic acid. Full article
(This article belongs to the Special Issue Advances in Ceramics)
Show Figures

Figure 1

15 pages, 2661 KiB  
Article
Silicas Chemically Modified with Sulfur-Containing Groups for Separation and Preconcentration of Precious Metals Followed by Spectrometric Determination
by Vladimir Losev, Evgeney Elsuf’ev, Elena Borodina, Olga Buyko, Natalya Maznyak and Anatoliy Trofimchuk
Minerals 2021, 11(5), 481; https://doi.org/10.3390/min11050481 - 30 Apr 2021
Cited by 6 | Viewed by 2638
Abstract
Silicas chemically modified with a number of sulfur-containing groups (mercaptopropyl, mercaptophenyl, dipropyl disulfide, thiadiazole thiol, dithiocarbamate and thiourea derivatives) were proposed for the separation and preconcentration of precious metals. These adsorbents quantitatively extracted precious metals from 0.5 to 4 M solutions of hydrochloric [...] Read more.
Silicas chemically modified with a number of sulfur-containing groups (mercaptopropyl, mercaptophenyl, dipropyl disulfide, thiadiazole thiol, dithiocarbamate and thiourea derivatives) were proposed for the separation and preconcentration of precious metals. These adsorbents quantitatively extracted precious metals from 0.5 to 4 M solutions of hydrochloric acid. It allowed their separation from high concentrations of non-ferrous, alkaline earth, alkali and some other related metals. The selectivity of separation of kinetically labile precious metal ions in ligand substitution reactions from kinetically inert ones depended on the nature of sulfur atom within the functional group of adsorbents and increased when passing from thione to thiol sulfur. Approaches for the preconcentration of precious metals using silicas chemically modified with sulfur-containing groups prior to their AAS, ICP-OES, and ICP-MS determination in ores, concentrates and their processing products were proposed. The correctness of the developed methods was confirmed by the analysis of certified reference materials. Full article
(This article belongs to the Special Issue Solid-Phase Extraction and Determination of Precious Metals)
Show Figures

Figure 1

22 pages, 6314 KiB  
Review
Towards Reversible High-Voltage Multi-Electron Reactions in Alkali-Ion Batteries Using Vanadium Phosphate Positive Electrode Materials
by Edouard Boivin, Jean-Noël Chotard, Christian Masquelier and Laurence Croguennec
Molecules 2021, 26(5), 1428; https://doi.org/10.3390/molecules26051428 - 6 Mar 2021
Cited by 32 | Viewed by 6097
Abstract
Vanadium phosphate positive electrode materials attract great interest in the field of Alkali-ion (Li, Na and K-ion) batteries due to their ability to store several electrons per transition metal. These multi-electron reactions (from V2+ to V5+) combined with the high [...] Read more.
Vanadium phosphate positive electrode materials attract great interest in the field of Alkali-ion (Li, Na and K-ion) batteries due to their ability to store several electrons per transition metal. These multi-electron reactions (from V2+ to V5+) combined with the high voltage of corresponding redox couples (e.g., 4.0 V vs. for V3+/V4+ in Na3V2(PO4)2F3) could allow the achievement the 1 kWh/kg milestone at the positive electrode level in Alkali-ion batteries. However, a massive divergence in the voltage reported for the V3+/V4+ and V4+/V5+ redox couples as a function of crystal structure is noticed. Moreover, vanadium phosphates that operate at high V3+/V4+ voltages are usually unable to reversibly exchange several electrons in a narrow enough voltage range. Here, through the review of redox mechanisms and structural evolutions upon electrochemical operation of selected widely studied materials, we identify the crystallographic origin of this trend: the distribution of PO4 groups around vanadium octahedra, that allows or prevents the formation of the vanadyl distortion (OV4+=O or OV5+=O). While the vanadyl entity massively lowers the voltage of the V3+/V4+ and V4+/V5+ couples, it considerably improves the reversibility of these redox reactions. Therefore, anionic substitutions, mainly O2− by F, have been identified as a strategy allowing for combining the beneficial effect of the vanadyl distortion on the reversibility with the high voltage of vanadium redox couples in fluorine rich environments. Full article
Show Figures

Figure 1

16 pages, 647 KiB  
Article
The Effect of Alkali and Ce(III) Ions on the Response Properties of Benzoxazine Supramolecules Prepared via Molecular Assembly
by Attaphon Kaewvilai, Sawittree Rujitanapanich, Worawat Wattanathana, Chatchai Veranitisagul, Songwut Suramitr, Nattamon Koonsaeng and Apirat Laobuthee
Molecules 2012, 17(1), 511-526; https://doi.org/10.3390/molecules17010511 - 5 Jan 2012
Cited by 19 | Viewed by 6019
Abstract
A series of benzoxazine monomer supramolecules with different substituted groups on their benzene ring was prepared with a Mannich reaction and characterized by FTIR, 1H-NMR and MS. The obtained products were 3,4-dihydro-3-(2’-hydroxyethylene)-6-methyl-2H-benzoxazine (BM1), 3,4-dihydro-3-(2’-hydroxyethylene)-6-ethyl-2H-benz-oxazine (BM2), and 3,4-dihydro-3-(2’-hydroxyethylene)-6-methoxy-2H-benzoxazine ( [...] Read more.
A series of benzoxazine monomer supramolecules with different substituted groups on their benzene ring was prepared with a Mannich reaction and characterized by FTIR, 1H-NMR and MS. The obtained products were 3,4-dihydro-3-(2’-hydroxyethylene)-6-methyl-2H-benzoxazine (BM1), 3,4-dihydro-3-(2’-hydroxyethylene)-6-ethyl-2H-benz-oxazine (BM2), and 3,4-dihydro-3-(2’-hydroxyethylene)-6-methoxy-2H-benzoxazine (BM3). The efficiency of alkali metal ion extraction from the products was determined with Pedersen’s technique, while the complexation of the Ce(III) ion was confirmed by the Job’s and the mole ratio methods. The evidence of complex formation between benzoxazine monomers and Ce(III) ions was obtained with FTIR and a computational simulation. Single phase ceria (CeO2) as observed with XRD was successfully prepared by calcinating the Ce(III)-benzoxazine monomer complexes at 600 °C for 2 h. In addition, the geometry of the ceria nanoparticles confirmed by TEM is spherical, with an average diameter of 10‑20 nm. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop