A Review of Analytical Techniques for the Determination and Separation of Silver Ions and Its Nanoparticles
Abstract
:1. Introduction
Silver, Its Compounds and Forms
2. Analytical Techniques for Silver Determination
2.1. Spectrometric Methods
2.2. Separation Methods
2.3. Electroanalytical Methods
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, K.; Pérez-Ráfols, C.; Cuartero, M.; Crespo, G.A. Electrochemical Detection of Trace Silver. Electrochim. Acta 2021, 374, 137929. [Google Scholar] [CrossRef]
- Umapathi, R.; Raju, C.V.; Ghoreishian, S.M.; Rani, G.M.; Kumar, K.; Oh, M.H.; Park, J.P.; Huh, Y.S. Recent advances in th use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev. 2022, 470, 214708. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Raoof, J.B.; Ojani, R. Novel Electrochemical DNA Hybridization Biosensors for Selective Determination of Silver Ions. Talanta 2015, 144, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, A.; Radu, A.; Peper, S.; Bakker, E.; Pretsch, E. Rational Design of Potentiometric Trace Level Ion Sensors. A Ag+ Selective Electrode with a 100 ppt Detection Limit. Anal. Chem. 2002, 74, 4027–4036. [Google Scholar] [CrossRef] [PubMed]
- Barriada, J.L.; Tappin, A.D.; Evans, E.H.; Achterberg, E.P. Dissolved Silver Measurements in Seawater. TrAC Trends Anal. Chem. 2007, 26, 809–817. [Google Scholar] [CrossRef]
- Tappin, A.D.; Barriada, J.L.; Braungardt, C.B.; Evans, E.H.; Patey, M.D.; Achterberg, E.P. Dissolved Silver in European Estuarine and Coastal Waters. Water Res. 2010, 44, 4204–4216. [Google Scholar] [CrossRef]
- Shamsipur, M.; Javanbakht, M.; Ghasemi, Z.; Ganjali, M.R.; Lippolis, V.; Garau, A. Separation, Preconcentration and Determina tion of Trace Amounts of Silver Ion in Aqueous Samples Using Octadecyl Silica Membrane Disks Modified with Some Recently Synthesized Mixed Aza-Thioether Crowns Containing 1,10-phenanthroline Sub-Unit and Atomic Absorption Spectrometry. Sep. Purif. Technol. 2002, 28, 141–147. [Google Scholar]
- Peng, J.J.Y.; Botelho, M.G.; Matinlinna, J.P. Silver Compounds Used in Dentistry for Caries Management: A Review. J. Dent. 2012, 40, 531–541. [Google Scholar] [CrossRef]
- Durán, N.; Marcato, P.D.; De Souza, G.I.H.; Alves, O.L.; Esposito, E. Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment. J. Biomed. Nanotechnol. 2007, 3, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wu, X.; Chen, Y.; Lin, H. Application of Silver Nanoparticles to Cotton Fabric as an Antibacterial Textile Finish. Fibers Polym. 2009, 10, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Frag, E.Y.; El-Zaher, N.A.; Elasheri, S.E.A. Carbon Thick Sheet Potentiometric Sensor for Selective Determination of Silver Ions in X-Ray Photographic Film. Microchem. J. 2020, 155, 104750. [Google Scholar] [CrossRef]
- van Hengel, I.A.J.; Riool, M.; Fratila-Apachitei, L.E.; Witte-Bouma, J.; Farrell, E.; Zadpoor, A.A.; Zaat, S.A.J.; Apachitei, I. Selective Laser Melting Porous Metallic Implants with Immobilized Silver Nanoparticles Kill and Prevent Biofilm Formation by Methicillin-Resistant Staphylococcus Aureus. Biomaterials 2017, 140, 1–15. [Google Scholar] [CrossRef]
- Gade, A.; Adams, J.; Britt, D.W.; Shen, F.A.; McLean, J.E.; Jacobson, A.; Kim, Y.C.; Anderson, A.J. Ag Nanoparticles Generated Using Bio-Reduction and Coating Cause Microbial Killing without Cell Lysis. Biometals 2016, 29, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Quan, X.; Si, X.; Wang, X. A Small Molecule Norspermidine in Combination with Silver Ion Enhances Dispersal and Disinfection of Multi-Species Wastewater Biofilms. Appl. Microbiol. Biotechnol. 2016, 100, 5619–5629. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.M.; Hogstrand, C.; Galvez, F.; Munger, R.S. The Physiology of Waterborne Silver Toxicity in Freshwater Rainbow Trout (Oncorhynchus Mykiss) 1. The Effects of Ionic Ag+. Aquat. Toxicol. 1996, 35, 93–109. [Google Scholar] [CrossRef]
- Miao, P.; Tang, Y.; Wang, L. DNA Modified Fe3O4@Au Magnetic Nanoparticles as Selective Probes for Simultaneous Detection of Heavy Metal Ions. ACS Appl. Mater. Interfaces 2017, 9, 3940–3947. [Google Scholar] [CrossRef]
- Ramos, K.; Ramos, L.; Gómez-Gómez, M.M. Simultaneous Characterization of Silver Nanoparticles and Determination of Dissolved Silver in Chicken Meat Subjected to In Vitro Human Gastrointestinal Digestion Using Single Particle Inductively Coupled Plasma Mass Spectrometry. Food Chem. 2017, 221, 822–828. [Google Scholar] [CrossRef]
- Michalke, B.; Vinković-Vrček, I. Speciation of Nano and Ionic Form of Silver with Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry. J. Chromatogr. A 2018, 1572, 162–171. [Google Scholar] [CrossRef]
- Haider, A.; Kang, I.K. Preparation of Silver Nanoparticles and Their Industrial and Biomedical Applications: A Comprehensive Review. Adv. Mat. Sci. Eng. 2015, 2015, 165257. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xiao, B.; Fang, T. Chemical Transformation of Silver Nanoparticles in Aquatic Environments: Mechanism, Morphology and Toxicity. Chemosphere 2018, 191, 324–334. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M.V. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanoparticles Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Hernández, D.; Vidal, J.C.; Laborda, F.; Pérez-Arantegui, J.; Giménez-Ingalaturre, A.C.; Castillo, J.R. Detection, Size Characterization and Quantification of Silver Nanoparticles in Consumer Products by Particle Collision Coulometry. Microchim. Acta 2021, 188, 12. [Google Scholar] [CrossRef]
- Stebounova, L.V.; Guio, E.; Grassian, V.H. Silver Nanoparticles in Simulated Biological Media: A Study of Aggregation, Sedi-mentation and Dissolution. J. Nanoparticles Res. 2011, 13, 233–244. [Google Scholar] [CrossRef]
- Coles, D.; Frewer, L.J. Nanotechnology Applied to European Food Production a Review of Ethical and Regulatory Issues. Trends Food Sci. Technol. 2013, 34, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Arjun, P.N.J.; Sankar, B.; Shankar, K.V.; Kulkarni, N.V.; Sivasankaran, S.; Shankar, B. Silver and Silver Nanoparticles for Potential Treatment of COVID-19: A Review. Coatings 2022, 12, 1679. [Google Scholar] [CrossRef]
- He, Q.; Lu, J.; Liu, N.; Lu, W.; Li, Y.; Shang, C.; Li, X.; Hu, L.; Jiang, G. Antiviral Properties of Silver Nanoparticles against SARS-CoV-2: Effects of Surface Coating and Particle Size. Nanomaterials 2022, 12, 990. [Google Scholar] [CrossRef] [PubMed]
- Mbanga, O.; Cukrowska, E.; Gulumian, M. Dissolution kinetics of silver nanoparticles: Behaviour in simulated biological fluids and synthetic environmental media. Toxicol. Rep. 2022, 9, 788–796. [Google Scholar] [CrossRef]
- Yan, A.; Chen, Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef]
- Oehme, I.; Wolfbeis, O.S. Optical Sensors for Determination of Heavy Metal Ions. Mikrochim. Acta 1997, 126, 177–192. [Google Scholar] [CrossRef]
- Ye, Z.; Weng, R.; Ma, Y.; Wang, F.; Liu, H.; Wei, L.; Xiao, L. Label-Free, Single-Particle, Colorimetric Detection of Permangnate by GNPs@Ag Core–Shell Nanoparticles with Dark-Field Optical Microscopy. Anal. Chem. 2018, 90, 13044–13050. [Google Scholar] [CrossRef]
- Du, J.; Zhu, B.; Peng, X.; Chen, X. Optical Reading of Contaminants in Aqueous Media Based on Gold Nanoparticles. Small 2014, 10, 3461–3479. [Google Scholar] [CrossRef] [PubMed]
- Memon, S.S.; Sirauddin-Memon, S.; Kumar, A.; Memon, N.S. Efficient Development and Characterisation of Asp-AuNPs Based Colorimetric Sensor for the Detection of Ag(I) from Real Water Samples. Int. J. Environ. Anal. Chem. 2020, 100, 1–11. [Google Scholar] [CrossRef]
- Jing, C.; Gu, Z.; Ying, Y.L.; Li, D.W.; Zhang, L.; Long, Y.T. Chrominance to Dimension: A Real-Time Method for Measuring the Size of Single Gold Nanoparticles. Anal. Chem. 2012, 84, 4284–4291. [Google Scholar] [CrossRef]
- Hammami, I.; Alabdallah, N.M.; Aljomaa, A.; Kamoun, M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ. Sci. 2021, 33, 101560. [Google Scholar] [CrossRef]
- Pasparakis, G. Recent developments in the use of gold and silvernanoparticles in biomedicine. Nanobiotechnology 2022, 14, 1817. [Google Scholar]
- Devi, R.S.; Girigoswami, A.; Siddharth, M.; Girigoswami, K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl. Biochem. Biotechnol. 2022, 194, 4187–4219. [Google Scholar] [CrossRef] [PubMed]
- Azizi, B.; Farhadi, K.; Naser, S. Label-Free Gold Nanoparticles in the Presence of Ammonium Pyrrolidine Dithiocarbamate as a Selective and Sensitive Silver Ion Colorimetric Probe. J. Anal. Chem. 2020, 75, 1546–1553. [Google Scholar] [CrossRef]
- Mao, L.; Wang, Q.; Luo, Y.; Gao, Y. Detection of Ag+ Ions via an Anti-Aggregation Mechanism using Unmodified Gold Nanoparticles in the Presence of Thiamazole. Talanta 2021, 222, 121506. [Google Scholar] [CrossRef]
- Qiu, Y.; Kuang, C.; Liu, X.; Tang, L. Single-Molecule Surface-Enhanced Raman Spectroscopy. Sensors 2022, 22, 4889. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Prim. 2021, 1, 87. [Google Scholar] [CrossRef]
- Ma, Y.; Promthaveepong, K.; Li, N. Chemical Sensing on a Single SERS Particle. ACS Sens. 2017, 2, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.R.; Xiang, Y.; Guo, X.Y.; Wu, Y.P.; Wen, Y.; Yang, H.F. Diazo-Reaction Based SERS Substrates for Detection of Nitrite in Saliva. Sens. Actuators B Chem. 2018, 271, 118–121. [Google Scholar] [CrossRef]
- Gu, X.; Camden, J.P. Surface Enhanced Raman Spectroscopy Based Approach for Ultrasensitive and Selective Detection of Hydrazine. Anal. Chem. 2015, 87, 6460–6464. [Google Scholar] [CrossRef]
- Kang, Y.; Wu, T.; Liu, B.X.; Wang, X.; Du, Y.P. Selective Determination of Mercury (II) by Self-Referenced Surface Enhanced Raman Scattering using Dialkyne Modified Silver Nanoparticles. Microchim. Acta 2014, 181, 1333–1339. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Duyne, R.P.V. SERS: Materials, Applications, and the Future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Xie, W.; Walkenfort, B.; Schlücker, S. Label-Free SERS Monitoring of Chemical Reactions Catalyzed by Small Gold Nanoparticles Using 3D Plasmonic Superstructures. J. Am. Chem. Soc. 2013, 135, 1657–1660. [Google Scholar] [CrossRef]
- Xie, W.; Schlücker, S. Hot Electron-Induced Reduction of Small Molecules on Photorecycling Metal Surfaces. Nat. Commun. 2015, 6, 7570. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Luo, L.; Li, H.P.; Wang, Q.; Yang, Z.G.; Long, C.L. Separation and Determination of Silver Nanoparticle in Environmental Water and the UV-Induced Photochemical Transformations Study of AgNPs by Cloud Point Extraction Combined ICP-MS. Talanta 2016, 161, 342–349. [Google Scholar] [CrossRef]
- Xu, P.; Kang, L.L.; Mack, N.H.; Schanze, K.S.; Han, X.J.; Wang, H.L. Mechanistic Understanding of Surface Plasmon Assisted Catalysis on a Single Particle:Cyclic Redox of 4-Aminothiophenol. Sci. Rep. 2013, 3, 2997. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.F.; Wang, L.Z.; Tan, X.J.; Tian, B.Z.; Zhang, J.L. Surface-Enhanced Raman Spectroscopy Assisted by Radical Capturer for Tracking of Plasmon-Driven Redox Reaction. Sci. Rep. 2016, 6, 30193. [Google Scholar] [CrossRef]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Duyne, R.P.V. Surface Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.F.; Liu, G.K. Laser-Induced Chemical Transformation of PATP Adsorbed on Ag Nanoparticles by Surface-Enhanced Raman Spectroscopy-A Study of the Effects from Surface Morphology of Substrate and Surface Coverage of PATP. Spectrochim. Acta A Mol. 2015, 138, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.X.; Wu, S.W.; Wang, J.; Ma, C.Q.; Song, P. Spectral Proof for the 4-Aminophenyl Disulfide Plasma Assisted Catalytic Reaction. Sci. Rep. 2017, 7, 4358. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.W.; Liu, Y.; Ma, C.Q.; Wang, J.; Zhang, Y.; Song, P.; Xia, L.X. Effect of Intermolecular Distance on Surface-Plasmon-Assisted Catalysis. Langmuir 2018, 34, 7240–7247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Merk, V.; Hermanns, A.; Unger, W.E.S.; Kneipp, J. Role of Metal Cations in Plasmon-Catalyzed Oxidation: A Case Study of p-Aminothiophenol Dimerization. ACS Catal. 2017, 7, 7803–7809. [Google Scholar] [CrossRef]
- Amjadi, A.; Shokri, R.; Hallaj, T. A New Turn-Off Fluorescence Probe Based on Graphene Quantum Dots for Detection of Au(III) Ion. Spectrochim. Acta A 2016, 153, 619–624. [Google Scholar] [CrossRef]
- Barati, A.; Shamsipur, M.; Abdollahi, H. Metal-Ion-Mediated Fluorescent Carbon Dots for Indirect Detection of Sulfide Ions. Sens. Actuators B 2016, 230, 289–297. [Google Scholar] [CrossRef]
- Elmizadeh, H.; Soleimani, M.; Faridbod, F.; Bardajee, G.R. Fabrication of a Nanomaterial-Based Fluorescence Sensor Costructed from Ligand Capped CdTe Quantum Dots for Ultrasensitive and Rapid Detection of Silver Ions in Aqueous Samples. Spectrochim. Acta A 2019, 211, 291–298. [Google Scholar] [CrossRef]
- Gontrani, L.; Bauer, E.M.; Nucara, A.; Tagliatesta, P.; Carbone, M. Highly Specific Silver Ion Detection by Fluorescent Carbon Quantum Dots. Chemosensors 2022, 10, 362. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, L.; Gao, X.; Jie, G.; Huang, T. Silver Nanoclusters-Assisted Ion-Exchange Reaction with CdTe Quantum Dots for Photoelectrochemical Detection of Adenosine by Target-Triggering Multiple-Cycle Amplification Strategy. Biosens. Biolectron. 2018, 110, 239–245. [Google Scholar] [CrossRef]
- Wang, Y.H.; Liu, Y.X.; Wu, B.; Rui, M.; Liu, J.C.; Lu, G.H. Comparison of Toxicity Induced by EDTA-Cu after UV/H2O2 and UV/Persulfate Treatment: Species-Specific and Technology-Dependent Toxicity. Chemosphere 2020, 240, 124942. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhong, H.; Zhao, P.; Shen, A.; Li, H.; Liu, X. Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control 2022, 133A, 108591. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J.J.; Yang, T.; Chen, L.; Hou, J.; Feng, C.H.; Huang, C.Z. Development of a Portable Device for Ag+ Sensing Using CdTe QDs as Fluorescence Probe via an Electron Transfer Process. Talanta 2019, 191, 357–363. [Google Scholar] [CrossRef]
- Zhao, X.E.; Lei, C.H.; Gao, Y.; Gao, H.; Zhu, S.Y.; Yang, X.; You, J.M.; Wang, H. A Ratiometric Fluorescent Nanosensor for the Detection of Silver Ions Using Graphene Quantum Dots. Sens. Actuators B 2017, 253, 239–246. [Google Scholar] [CrossRef]
- Guo, J.; Ye, S.; Li, H.; Song, J.; Qu, J. Novel carbon dots with dual excitation for imaging and silver ion detection in living cells. Dye. Pigment. 2020, 183, 108723. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, X.M.; Jiang, X.M.; Wu, P. Carbon Dots and AuNCs Co-Doped Electrospun Membranes for Ratiometric Fluorescent Determination of Cyanide. J. Hazard. Mat. 2020, 384, 121368. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Jin, W.Y.; Wang, F.X.; Li, T.C.; Nie, J.F.; Xiao, W.C.; Zhang, Q.; Zhang, Y. Ratiometric Fluorescent Sensing of Pb2+ and Hg2+ with Two Types of Carbon Dot Nanohybrids Synthesized from the Same Biomass. Sens. Actuators B 2019, 296, 26698. [Google Scholar] [CrossRef]
- Dong, M.M.; Liu, C.L.; Li, S.Y.; Li, R.; Qiao, Y.C.; Zhang, L.Y.; Wei, W.; Qi, W.; Wang, H. Polymerizing Dopamine Onto Q-Graphene Scaffolds Towards the Fluorescent Nanocomposites with High Aqueous Stability and Enhanced Fluorescence for the Fluorescence Analysis and Imaging of Copper Ions. Sens. Actuators B 2016, 232, 234–242. [Google Scholar] [CrossRef]
- Chen, H.Y.; Wang, S.; Fu, H.Y.; Xie, H.L.; Lan, W.; Xu, L.; Zhang, L.; She, Y.B. Dual-QDs Ratios Fluorescent Probe for Sensitive and Selective Detection of Silver Ions Contamination in Real Sample. Spectrochim. Acta A 2020, 234, 118248. [Google Scholar] [CrossRef]
- Wang, H.L.; Zhu, W.J.; Fang, M.; Xu, Y.; Li, C. Turn-On Fluorescence Probe for High Sensitive and Selective Detection of Ag+ by L-Glutathione Capped CdTe Quantum Dots in Aqueous Medium. J. Lumin. 2016, 180, 14–19. [Google Scholar] [CrossRef]
- Torrent, L.; Iglesias, M.; Hidalgo, M.; Margui, E. Determination of Silver Nanoparticles in Complex Aqueous Matrices by Total Reflection X-ray Fluorescence Spectrometry Combined with Cloud Point Extraction. J. Anal. At. Spectrom. 2018, 33, 383–394. [Google Scholar] [CrossRef]
- Biata, N.R.; Dimpe, K.M.; Ramontja, J.; Mketo, N.; Nomngongo, P.N. Determination of Thallium in Water Samples Using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) after Ultrasonic Assisted-Dispersive Solid Phase Macro-extraction. Microchem. J. 2018, 137, 214–222. [Google Scholar] [CrossRef]
- Ozdemir, S.; Mohamedsaid, S.A.; Kilinc, E.; Yildirim, A.; Soylak, M. Application of Magnetized Fungal Solid Phase Extractor with Fe2O3 Nanoparticle for Determination and Preconcentration of Co(II) and Hg(II) from Natural Water Samples. Micrchem. J. 2018, 143, 198–204. [Google Scholar] [CrossRef]
- Yamini, Y.; Safari, M. Modified Magnetic Nanoparticles with Catechol as a Selective Sorbent for Magnetic Solid Phase Extraction of Ultra-Trace Amounts of Heavy Metals in Water and Fruit Samples Followed by Flow Injection ICP-OES. Microchem. J. 2018, 143, 503–511. [Google Scholar] [CrossRef]
- Li, L.; Leopold, K.; Schuster, M. Effective and Selective Extraction of Noble Metal Nanoparticles from Environmental Water through a Noncovalent Reversible Reaction on an Ionic Exchange Resin. Chem. Commun. 2012, 48, 9165–9167. [Google Scholar] [CrossRef]
- Mwilu, S.K.; Siska, E.; Baig, R.B.N.; Varma, R.S.; Heithmar, E.; Rogers, K.R. Separation and Measurement of Silver Nanparticles and Silver Ions using Magnetic Particles. Sci. Total Environ. 2014, 472, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Anekthirakun, P.; Imyim, A. Separation of Silver Ions and Silver Nanoparticles by Silica Based-Solid Phase Extraction Prior to ICP-OES Determination. Microchem. J. 2019, 145, 470–475. [Google Scholar] [CrossRef]
- Hagarová, I. Cloud Point Extraction Utilizable for Separation and Preconcentration of (Ultra)Trace Elements in Biological Fluids before Their Determination by Spectrometric Methods: A Brief Review. Chem. Papers 2016, 71, 869–879. [Google Scholar] [CrossRef]
- Samaddar, P.; Sen, K. Cloud Point Extraction: A Sustainable Method of Elemental Preconcentration and Speciation. J. Ind. Eng. Chem. 2014, 20, 1209–1219. [Google Scholar] [CrossRef]
- Pytlakowska, K.; Kozik, V.; Dabioch, M. Complex-Forming Organic Ligands in Cloud-Point Extraction of Metal Ions: A Review. Talanta 2013, 110, 202–228. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, L.Y.; Jin, B.B.; Helali, M. Dynamic Modeling of Parallel Mechanism Based on Particle System. J. Mech. Eng. Res. Dev. 2016, 39, 483–491. [Google Scholar]
- Yang, X.; Jia, Z.; Yang, X.; Li, G.; Liao, X. Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples. Saudi J. Biol. Sci. 2017, 24, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Ghali, A.A. Cloud Point Extraction for Pre-Concentration and Spectrophotometric Determination of Trace Amounts of Silver Ions. Int. J. Drug Deliv. Technol. 2020, 10, 459–464. [Google Scholar] [CrossRef]
- Laborda, F.; Bolea, E.; Cepriá, G.; Gómez, M.T.; Jiménez, M.S.; Pérez-Arantegui, J.; Castillo, J.R. Detection, Characterization and Quantification of Inorganic Engineered Nanomaterials: A Review of Techniques and Methodological Approaches for the Analysis of Complex Samples. Anal. Chim. Acta 2016, 904, 10–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdolahpur, F.M.; Chupani, L.; Vijver, M.G.; Vancová, M.; Peinemburg, W.J.G.M. Analytical Approaches for Characterizing and Quantifying Engineered Nanoparticles in Biological Matrices from an (Eco)Toxicological Perspective: Old Challenges, New Methods and Techniques. Sci. Total Environ. 2019, 660, 1283–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, E.P.; Bruton, T.A.; Higgins, C.P.; Halden, R.U.; Westerhoff, P.; Ranville, J.F. Analysis of Gold Nanoparticle Mixtures: A Comparison of Hydrodynamic Chromatography (HDC) and Asymmetric Flow-Field Fractionation (AF4) Coupled to ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1532–1539. [Google Scholar] [CrossRef]
- Jiménez, M.S.; Bakir, M.; Isábal, D.; Gómez, M.T.; Pérez-Arantegui, J.; Castillo, J.R.; Laborda, F. Evaluation of Hydrodynamic Chromatography Coupled to Inductively Coupled Plasma Mass Spectrometry for Speciation of Dissolved and Nanoparticulate Gold and Silver. Anal. Bioanal. Chem. 2021, 413, 1689–1699. [Google Scholar] [CrossRef]
- Striegel, A.M.; Brewer, A.K. Hydrodynamic Chromatography. Annu. Rev. Anal. Chem. 2012, 5, 15–34. [Google Scholar] [CrossRef]
- Small, H. Hydrodynamic Chromatography a Technique for Size Analysis of Colloidal Particles. J. Colloid Interface Sci. 1974, 48, 147–161. [Google Scholar] [CrossRef]
- Tiede, K.; Boxall, A.B.A.; Tiede, D.; Tear, S.P.; David, H.; Lewis, J. A Robust Size Characterization Methodology for Studying nanoparticle Behaviour in „Real” Environmental Samples, Using Hydrodynamic Chromatography Coupled to ICP-MS. J. Anal. At. Spectrom. 2009, 24, 964–972. [Google Scholar] [CrossRef]
- Philippe, A.; Schaumann, G.E. Evaluation of Hydrodynamic Chromatography Coupled with UV-Visible, Fluorescence and Inductively Coupled Plasma Mass Spectrometry Detectors for Sizing and Quantifying Colloids in Environmental Media. PLoS ONE 2014, 9, 90559. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.J. Hydrodynamic Chromatography-Inductively Coupled Plasma Mass Spectrometry with Post-Column Injection Capability for Simultaneous Determination of NP Size, Mass Concentration and Particle Number Concentration (HDC-PCiICP-MS). Analyst 2015, 140, 1624–1628. [Google Scholar] [CrossRef] [PubMed]
- Proulx, K.; Hadioui, M.; Wilkinson, K.J. Separation, Detection and Characterization of Nanomaterials in Municipal Wastewaters Using Hydrodynamic Chromatography Coupled to ICPMS and Single Particle ICPMS. Anal. Bioanal. Chem. 2016, 408, 5147. [Google Scholar] [CrossRef]
- Chang, Y.J.; Shih, Y.H.; Su, C.H.; Ho, H.C. Comparison of Three Analytical Methods to Measure the Size of Silver Nanoparticles in Real Environmental Water and Wastewater Samples. J. Hazard. Mat. 2017, 322, 95–104. [Google Scholar] [CrossRef]
- Pergantis, S.A.; Jones-Lepp, T.L.; Heithmar, E.M. Hydrodynamic Chromatography Online with Single Particle-Inductively Coupled Plasma Mass Spectrometry for Ultratrace Detection of Metal-Containing Nanoparticles. Anal. Chem. 2012, 84, 6454–6462. [Google Scholar] [CrossRef] [PubMed]
- Hseu, T.M.; Rechnitz, G.A. Analytical Study of a Sulfide Ion-Selective Membrane Electrode in Alkaline Solution. Anal.Chem. 1968, 40, 1054–1060. [Google Scholar] [CrossRef]
- De Marco, R.; Cattrall, R.W.; Liesegang, J.; Nyberg, G.L.; Hamilton, I.C. Surface Studies of the Silver Sulfide Ion Selective Electrode Membrane. Anal. Chem. 1990, 62, 2339–2346. [Google Scholar] [CrossRef]
- Lai, M.T.; Shih, J.S. Mercury (II) and Silver (I) Ion-Selective Electrodes Based on Dithia Crown Ethers. Analyst 1986, 111, 891–895. [Google Scholar] [CrossRef]
- Malinowska, E.; Brzózka, Z.; Kasiura, K.; Egbering, R.J.M.; Reinhoudt, D.N. Silver Selective Electrodes Based on Thioether Functionalized Calix [4] Arenes as Ionophores. Anal. Chim. Acta 1994, 298, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Szigeti, Z.; Malon, A.; Vigassy, T.; Csokai, V.; Grun, A.; Wygladacz, K.; Ye, N.; Xu, C.; Chebny, V.J.; Bitter, I.; et al. Novel Potentiometric and Optical Silver Ion-Selective Sensors with Subnanomolar Detection Limits. Anal. Chim. Acta 2006, 572, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chumbimuni-Torres, K.Y.; Rubinova, N.; Radu, A.; Kubota, L.T.; Bakker, E. Solid Contact Potentiometric Sensors for Trace Level Measurements. Anal. Chem. 2006, 78, 1318–1322. [Google Scholar] [CrossRef] [Green Version]
- Sang, S.G.; Yu, C.W.; Li, N.; Ji, Y.X.; Zhang, J. Characterization of a New Ag+ Selective Electrode with Lower Detection Limit. Int. J. Electrochem. Sci. 2012, 7, 3306–3313. [Google Scholar]
- Lai, C.Z.; Fierke, M.A.; Costa, R.C.D.; Gladysz, J.A.; Stein, A.; Buhlmann, P. Highly Selective Detection of Silver in the Low Ppt Range with Ion-Selective Electrodes Based on Ionophore-Doped Fluorous Membranes. Anal. Chem. 2010, 82, 7634–7640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, D.J.; Cuartero, M.; Crespo, G.A.; Bakker, E. Voltammetric Thin-Layer lonophore-Based Films: Part 1. Experimental Evidence and Numerical Simulations. Anal. Chem. 2017, 89, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Gasbarri, C.; Ruggieri, F.; Foschi, M.; Aceto, A.; Scotti, L.; Angelini, G. Simple Determination of Silver Nanoparticles Concentration as Ag+ by Using ISE as Potential Alternative to ICP Optical Emission Spectrometry. Opt. Emiss. Spectrom. ChemistrySelect 2019, 4, 9501–9504. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Li, J.; Yang, W.J.; Zhang, X.L.; Zhang, C.; Labbé, C.; Portier, X.; Liu, F.; Yao, J.L.; Liu, B.D. Simultaneous Detection of Trace Ag(I) and Cu(II) Ions Using Homoepitaxially Grown GaN Micropillar Electrode. Anal. Chim. Acta 2020, 1100, 22–30. [Google Scholar] [CrossRef]
- Davies, T.J. Anodic Stripping Voltammetry with Graphite Felt Electrodes for the Trace Analysis of Silver. Analyst 2016, 141, 4742–4748. [Google Scholar] [CrossRef] [Green Version]
- El-Mai, H.; Espada-Bellido, E.; Stitou, M.; Garcia-Vargas, M.; Galindo-Riano, M.D. Determination of Ultra-Trace Amounts of Silver in Water by Differential Pulse Anodic Stripping Voltammetry Using a New Modified Carbon Paste Electrode. Talanta 2016, 151, 14–22. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Parvin, M.H. Differential Pulse Anodic Stripping Voltammetric Simultaneous Determination of Copper(II) and Silver(I) with Bis(2-Hydroxyacetophenone) Butane-2,3-Dihydrazone Modified Carbon Paste Electrodes. Electroanalysis 2010, 22, 2291–2296. [Google Scholar] [CrossRef]
- Gulppi, M.A.; Vejar, N.; Tamayo, L.; Azocar, M.I.; Vera, C.; Silva, C.; Zagal, J.H.; Scholz, F.; Páez, M.A. Stripping Voltammetry Microprobe (SPV): A New Approach in Electroanalysis. Electrochem. Commun. 2014, 41, 8–11. [Google Scholar] [CrossRef]
- Afkhami, A.; Madrakian, T.; Sabounchei, S.J.; Rezaei, M.; Samiee, S.; Pourshahbaz, M. Construction of a Modified Carbon Paste Electrode for the Highly Selective Simultaneous Electrochemical Determination of Trace Amounts of Mercury (II) and Cadmium(II). Sens. Actuators B 2012, 161, 542–548. [Google Scholar] [CrossRef]
- Gao, Z.Q.; Li, P.B.; Zhao, Z.F. Determination of Iron (II) with Chemically-Modified Carbon-Paste Electrodes. Talanta 1991, 38, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, M.F.; Rahmani, A.; Golabi, S.M.; Shamsipur, M.; Sharghi, H. Differential Pulse Anodic Stripping Voltammetric Determination of Lead (II) with 1,4-Bis (Prop-2’-Enyloxy)-9,10-Antraquinone Modified Carbon Paste Electrode. Talanta 2001, 55, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Švancara, I.; Vytřas, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis. Electroanalysis 2009, 21, 7–28. [Google Scholar] [CrossRef]
- Zhang, T.; Chai, Y.Q.; Yuan, R.; Guo, J.X. Potentiometric Detection of Silver (I) Ion Based on Carbon Paste Electrode Modified with Diazo-Thiophenol-Functionalized Nanoporous Silica Gel. Mat. Sci. Eng. C 2012, 32, 1179–1183. [Google Scholar] [CrossRef]
- Ibrahim, H. Carbon Paste Electrode Modified with Silver Thimerosal for the Potentiometric Flow Injection Analysis of Silver(I). Anal. Chim. Acta 2005, 545, 158–165. [Google Scholar] [CrossRef]
- Mashadizadeh, M.H.; Mostafavi, A.; Allah-Abadi, H.; Sheikhshoai, I. New Schiff Base Modified Carbon Paste and Coated Wire PVC Membrane Electrode for Silver Ion. Sens. Actuators B 2006, 113, 930–936. [Google Scholar] [CrossRef]
- Zhao, Q.; Chai, Y.Q.; Yuan, R.; Zhang, T.; Yang, C.L. A New Silver (I)—Selective Electrode Based on Derivatize WCNTs@SiO2 Nanocomposites as a Neutral Carrier. Mat. Sci. Eng. C 2012, 32, 1352–1357. [Google Scholar] [CrossRef]
- Afkhami, A.; Shirzadmehr, A.; Madrakian, T.; Bagheri, H. New Nano-Composite Potentiometric Sensor Composed of Graphene Nanosheets/Thionine/ Molecular Wire for Nanomolar Detection of Silver Ion in Various Real Samples. Talanta 2015, 131, 548–555. [Google Scholar] [CrossRef]
- Labar, C.H.; Lamberts, L. Anodic Stripping Voltammetry with Carbon Paste Electrodes for Rapid Ag (I) and Cu (II) Determinations. Talanta 1997, 44, 733–742. [Google Scholar] [CrossRef]
- Li, Y.H.; Xie, H.Q.; Zhou, F.Q. Alizarin Violet Modified Carbon Paste Electrode for the Determination of Trace Silver (I) by Adsorptive Voltammetry. Talanta 2005, 67, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Mohadesi, A.; Taher, M.A. Stripping Voltammetric Determination of Silver (I) at Carbon Paste Electrode Modified with 3-Amino-2-Mercapto-Quinazolin-4(3H)-One. Talanta 2007, 71, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.F.; Cao, Z.; Fu, N.Y.; Wang, J.T.; Weng, L.H.; Bezerra-De-Carvalho, A.; Peppe, C. Preparation, Characterization, Electrochemical Studies and Crystal Structure Determination of Salicylaldehyde–Aroylhydrazone, Ferrocenyl–Aroylhydrazone and Salicylaldehyde–Ferrocenoylhydrazone Complexes of Indium. J. Organometal. Chem. 2001, 637–639, 631–641. [Google Scholar] [CrossRef]
- Lu, Y.H.; Lu, Y.W.; Wu, C.L.; Shao, Q.; Chen, X.L.; Bimbong, R.N.B. UV–Visible Spectroscopic Study of the Salicyladehyde Benzoylhydrazone and Its Cobalt Complexes. Spectrochim. Acta A 2006, 65, 695–701. [Google Scholar] [CrossRef]
- Batchelor-McAuley, C.; Kätelhön, E.; Barnes, E.O.; Compton, R.G.; Laborda, E.; Molina, A. Recent Advances in Voltammetry. Chem. Open 2015, 4, 224–260. [Google Scholar] [CrossRef]
- Bettazzi, F.; Palchetti, I. Nanotoxicity Assessment: A Challenging Application for Cutting Edge Electroanalytical Tools. Anal. Chim. Acta 2019, 1072, 61–74. [Google Scholar] [CrossRef]
- Cheng, W.; Compton, R.G. Electrochemical Detection of Nanoparticles by ‘Nano-Impact’ Methods. Trends Anal. Chem. 2014, 58, 79–89. [Google Scholar] [CrossRef]
- Stuart, E.J.E.; Rees, N.V.; Cullen, J.T.; Compton, R.G. Direct Electrochemical Detection and Sizing of Silver Nanoparticles in Seawater Media. Nanoscale 2013, 5, 174–177. [Google Scholar] [CrossRef]
- Rees, N.V. Electrochemical Insight from Nanoparticle Collisions with Electrodes: A Mini-Review. Electrochem. Commun. 2014, 43, 83–86. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Rees, N.V.; Compton, R.G. The Electrochemical Detection and Characterization of Silver Nanoparticles in Aqueous Solution. Angew. Chem. 2011, 50, 4219–4221. [Google Scholar] [CrossRef]
Sample | ICP-OES | ISE |
---|---|---|
1 | 31.4 ± 1.0 (3.2) | 31.8 ± 0.8 (2.5) |
2 | 23.7 ± 0.8 (3.4) | 23.4 ± 0.8 (3.4) |
3 | 29.2 ± 0.1 (0.3) | 29.3 ± 0.8 (2.7) |
4 | 24.2 ± 0.2 (0.8) | 24.1 ± 0.2 (0.8) |
5 | 26.8 ± 0.4 (1.5) | 27.2 ± 1.6 (4.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rievaj, M.; Culková, E.; Šandorová, D.; Durdiak, J.; Bellová, R.; Tomčík, P. A Review of Analytical Techniques for the Determination and Separation of Silver Ions and Its Nanoparticles. Nanomaterials 2023, 13, 1262. https://doi.org/10.3390/nano13071262
Rievaj M, Culková E, Šandorová D, Durdiak J, Bellová R, Tomčík P. A Review of Analytical Techniques for the Determination and Separation of Silver Ions and Its Nanoparticles. Nanomaterials. 2023; 13(7):1262. https://doi.org/10.3390/nano13071262
Chicago/Turabian StyleRievaj, Miroslav, Eva Culková, Damiána Šandorová, Jaroslav Durdiak, Renáta Bellová, and Peter Tomčík. 2023. "A Review of Analytical Techniques for the Determination and Separation of Silver Ions and Its Nanoparticles" Nanomaterials 13, no. 7: 1262. https://doi.org/10.3390/nano13071262