Shape-Factor Impact on a Mass-Based Hybrid Nanofluid Model for Homann Stagnation-Point Flow in Porous Media
Abstract
1. Introduction
2. Mathematical Formulas
3. Results Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
The velocity components | |
The external flow velocities | |
The strain shear rates | |
The ambient temperature | |
The characteristic temperature | |
The permeability of porous media | |
The conductivity in temperature | |
The coefficient of specific heat capacity | |
Coefficient for non-spherical nanoparticles in the effective viscosity relation for nanoparticles of different shapes | |
Coefficient for non-spherical nanoparticles in the effective viscosity relation for nanoparticles of different shapes | |
Shape factor | |
Coefficients of skin friction | |
Nusselt number | |
Coefficients from hybrid nanofluids | |
The Prandtl number | |
The local Reynolds numbers | |
Mass of first nanoparticles of hybrid nanofluids | |
Mass of second nanoparticles of hybrid nanofluids | |
Mass of base fluid | |
Greek symbols | |
The fluid density | |
The dynamic viscosity | |
Volume fraction of hybrid nanofluids | |
Sphericity of nanoparticles | |
Ratio of shear–strain rate | |
Coefficient of permeability |
References
- Chamkha, A.J. Unsteady laminar hydromagnetic flow and heat transfer in porous channels with temperature-dependent properties. Int. J. Numer. Methods Heat Fluid Flow 2001, 11, 430–448. [Google Scholar] [CrossRef]
- Umavathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-Mudhaf, A. Unsteady oscillatory flow and heat transfer in a horizontal composite porous medium channel. Nonlinear Anal. Model. Control 2009, 14, 397–415. [Google Scholar] [CrossRef]
- Momin, G.C. Experimental investigation of mixed convection with water-Al2O3 & hybrid nanofluid in inclined tube for laminar flow. Int. J. Sci. Technol. Res. 2013, 2, 195–202. [Google Scholar]
- Kasaeian, A.; Daneshazarian, R.; Mahian, O.; Kolsic, L.; Chamkhae, A.J.; Wongwise, S.; Pop, I. Nanofluid flow and heat transfer in porous media: A review of the latest developments. Int. J. Heat Mass Tran. 2017, 107, 778–791. [Google Scholar] [CrossRef]
- Ali, A.R.I.; Salam, B. A review on nanofluid: Preparation, stability, thermophysical properties, heat transfer characteristics and application. SN Appl. Sci. 2020, 2, 1636. [Google Scholar] [CrossRef]
- Khashi’ie, N.S.; Waini, I.; Arifin, N.M.; Pop, I. Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field. Sci. Rep. 2021, 11, 14128. [Google Scholar] [CrossRef] [PubMed]
- Sangapatanam, S.; Subbarayudu, K.; Reddy, B.A. Hybrid nanofluids development and benefits: A comprehensive review. J. Therm. Eng. 2022, 8, 445–455. [Google Scholar]
- Modi, K.V.; Patel, P.R.; Patel, S.K. Applicability of mono-nanofluid and hybrid-nanofluid as a technique to improve the performance of solar still: A critical review. J. Clean. Prod. 2023, 387, 135875. [Google Scholar] [CrossRef]
- Murshed, S.; Leong, K.; Yang, C. Enhanced thermal conductivity of TiO2/water based nanofluids. Int. J. Therm. Sci. 2005, 44, 367–373. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Routbort, J.L.; Singh, D. Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 2009, 106, 014304. [Google Scholar] [CrossRef]
- Jeong, J.; Li, C.; Kwon, Y.; Lee, J.; Kim, S.H.; Yun, R. Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int. J. Refrig. 2013, 36, 2233–2241. [Google Scholar] [CrossRef]
- Elias, M.M.; Miqdad, M.; Mahbubul, I.M.; Saidur, R.; Kamalisarvestani, M.; Sohel, M.R.; Hepbasli, A.; Rahim, N.A.; Amalina, M.A. Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. Int. Commun. Heat Mass Tran. 2013, 44, 93–99. [Google Scholar] [CrossRef]
- Vanaki, S.M.; Mohammed, H.A.; Abdollahi, A.; Wahid, M.A. Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts. J. Mol. Liq. 2014, 196, 32–42. [Google Scholar] [CrossRef]
- Ghadikolaei, S.S.; Yassari, M.; Sadeghi, H.; Hosseinzadeh, K.; Ganji, D.D. Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation-point flow. Powder Technol. 2017, 322, 428–438. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Sajjadi, H.; Delouei, A.A.; Atashafrooz, M.; Li, Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J. Therm. Anal. Calorim. 2018, 136, 2477–2485. [Google Scholar] [CrossRef]
- Benkhedda, M.; Boufendi, T.; Tayebi, T.; Chamkha, A.J. Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect. J. Therm. Anal. Calorim. 2020, 140, 411–425. [Google Scholar] [CrossRef]
- Shah, Z.; Ikramullah; Kumam, P.; Selim, M.M.; Alshehri, A. Impact of nanoparticles shape and radiation on the behavior of nanofluid under the Lorentz forces. Case Stud. Therm. Eng. 2021, 26, 101161. [Google Scholar] [CrossRef]
- Khashi’ie, N.S.; Arifin, N.M.; Sheremet, M.; Pop, I. Shape factor effect of radiative Cu-Al2O3/H2O hybrid nanofluid flow towards an EMHD plate. Case Stud. Therm. Eng. 2021, 26, 101199. [Google Scholar] [CrossRef]
- You, X.; Li, S. Fully developed opposing mixed convection flow in the inclined channel filled with a hybrid nanofluid. Nanomaterials 2021, 11, 1107. [Google Scholar] [CrossRef]
- You, X.; Li, S. Effect of nanoparticle sphericity on mixed convective flow of nanofluids in an inclined channel. Pet. Sci. Bull. 2021, 6, 604–613. [Google Scholar]
- You, X. Nanoparticle sphericity investigation of Cu-Al2O3-H2O hybrid nanofluid flows between inclined channels filled with a porous medium. Nanomaterials 2022, 12, 2552. [Google Scholar] [CrossRef]
- Wanatasanappan, V.V.; Kanti, P.K.; Sharma, P.; Husna, N.; Abdullah, M.Z. Viscosity and rheological behavior of Al2O3-Fe2O3/water-EG based hybrid nanofluid: A new correlation based on mixture ratio. J. Mol. Liq. 2023, 375, 121365. [Google Scholar] [CrossRef]
- Dinarvand, S.; Rostami, M.N. An innovative mass-based model of aqueous zinc oxide–gold hybrid nanofluid for von Ka´rma´n’s swirling flow. J. Therm. Anal. Calorim. 2019, 138, 845–855. [Google Scholar] [CrossRef]
- Berrehal, H.; Dinarvand, S.; Khan, I. Mass-based hybrid nanofluid model for entropy generation analysis of flow upon a convectively-warmed moving wedge. Chin. J. Phys. 2022, 77, 2603–2616. [Google Scholar] [CrossRef]
- Rahimi, A.; Surendar, A.; Kasaeipoor, A.; Hooshmand, P.; Malekshah, E.H. Lattice Boltzmann simulation of nanofluid flow and heat transfer in a hollow multi-pipe heat exchanger considering nanoparticles’ shapes. Powder Technol. 2018, 339, 974–984. [Google Scholar] [CrossRef]
- Rao, Y.; Shao, Z.; Rahimi, A.; Kasaeipoor, A.; Malekshah, E.H. Study on fluid flow and heat transfer in fluid channel filled with KKL model-based nanofluid during natural convection using FVM. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 2622–2641. [Google Scholar] [CrossRef]
- Soumya, D.O.; Gireesha, B.J.; Venkatesh, P.; Alsulami, M.D. Effect of NP shapes on Fe3O4-Ag/kerosene and Fe3O4-Ag/water hybrid nanofluid flow in suction/injection process with nonlinear-thermal-radiation and slip condition; Hamilton and Crosser’s model. Wave Random Complex 2022. [Google Scholar] [CrossRef]
- Subray, P.V.A.; Hanumagowda, B.N.; Varma, S.V.K.; Hatami, M. The impacts of shape factor and heat transfer on two-phase flow of nano and hybrid nanofuid in a saturated porous medium. Sci. Rep. 2022, 12, 21864. [Google Scholar] [CrossRef]
- Esfe, M.H.; Alidoost, S.; Esfandeh, S.; Toghraie, D.; Hatami, H.; Kamyab, M.H.; Ardeshir, E.M. Theoretical-Experimental study of factors affecting the thermal conductivity of SWCNT-CuO (25:75)/water nanofluid and its challenging comparison with CuO nanofluids/water aiming to improve the base fluid thermal conductivity. Arab. J. Chem. 2023, 16, 104689. [Google Scholar] [CrossRef]
- Mandal, G.; Pal, D. Dual solutions of radiative Ag-MoS_2/water hybrid nanofluid flow with variable viscosity and variable thermal conductivity along an exponentially shrinking permeable Riga surface: Stability and entropy generation analysis. Int. J. Simul. Model. 2023. [Google Scholar] [CrossRef]
- Farooq, U.; Waqas, H.; Aldhabani, M.S.; Fatima, N.; Alhushaybari, A.; Ali, M.R.; Sadat, R.; Muhammad, T. Modeling and computational framework of radiative hybrid nanofluid configured by a stretching surface subject to entropy generation: Using Keller box scheme. Arab. J. Chem. 2023, 16, 104628. [Google Scholar] [CrossRef]
- Li, X.; Tian, C.; Li, H.; Liu, X.; Zhang, L.; Hong, S.; Ning, N.; Tian, M. Combined effect of volume fractions of nanofillers and filler-polymer interactions on 3D multiscale dispersion of nanofiller and Payne effect. Compos. Part A 2022, 152, 106722. [Google Scholar] [CrossRef]
- Qi, W.; Liu, M.; Wu, J.; Xie, Q.; Chen, L.; Yang, X.; Shen, B.; Bian, X.; Song, W. Promoting the thermal transport via understanding the intrinsic relation between thermal conductivity and interfacial contact probability in the polymeric composites with hybrid fillers. Compos. Part B 2022, 232, 109613. [Google Scholar] [CrossRef]
- Adun, H.; Mukhtar, M.; Adedeji, M.; Agwa, T.; Ibrahim, K.H.; Bamisile, O.; Dagbasi, M. Synthesis and application of ternary nanofluid for photovoltaic-thermal system: Comparative analysis of energy and exergy performance with single and hybrid nanofluids. Energies 2021, 14, 4434. [Google Scholar] [CrossRef]
- Adun, H.; Kavaz, D.; Dagbasi, M.; Umar, H.; Wole-Osho, I.L. An experimental investigation of thermal conductivity and dynamic viscosity of Al2O3-ZnO-Fe3O4 ternary hybrid nanofluid and development of machine learning model. Powder Technol 2021, 394, 1121–1140. [Google Scholar] [CrossRef]
- Adun, H.; Kavaz, D.; Wole-Osho, I.; Dagbasi, M. Synthesis of Fe3O4-Al2O3-ZnO/water ternary hybrid nanofluid: Investigating the effects of temperature, volume concentration and mixture ratio on Specific heat capacity, and development of Hybrid machine learning for prediction. J. Energy Storage 2021, 41, 102947. [Google Scholar] [CrossRef]
- Ariel, P.D. On extra boundary condition in the stagnation point flow of a second grade fluid. Internat. J. Engrg. Sci. 2002, 40, 145–162. [Google Scholar] [CrossRef]
- Weidman, P.D. Non-axisymmetric Homann’s stagnation-point flows. J. Fluid Mech. 2012, 702, 460–469. [Google Scholar] [CrossRef]
- Weidman, P.D. Impinging rotational stagnation-point flows. Int. J. Nonlinear Mech. 2017, 88, 97–101. [Google Scholar] [CrossRef]
- Dinarvand, S.; Hosseini, R.; Pop, I. Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nano fluid using Tiwari-Das nano fluid model. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 40–62. [Google Scholar] [CrossRef]
- Othman, N.A.; Yacob, N.A.; Bachok, N.; Ishak, A.; Pop, I. Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid. Appl. Therm. Eng. 2017, 11, 1412–1417. [Google Scholar] [CrossRef]
- Abbas, N.; Saleem, S.; Nadeem, S.; Alderremy, A.A.; Khan, A.U. On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Res. Phys. 2018, 9, 1224–1232. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Unsteady flow over a decelerating rotating sphere. Phys. Fluids 2018, 30, 033601. [Google Scholar] [CrossRef]
- Sharma, P.R.; Sinha, S.; Yadav, R.S.; Filippov, A.N. MHD mixed convective stagnation point flow along a vertical stretching sheet with heat source/sink. Int. J. Heat Mass Tran. 2018, 117, 780–786. [Google Scholar] [CrossRef]
- Sadiq, M.A.; Khan, A.U.; Saleem, S.; Nadeem, S. Numerical simulation of oscillatory oblique stagnation point flow of a magneto micropolar nanofluid. RSC Adv. 2019, 9, 4751–4764. [Google Scholar] [CrossRef]
- Ahmed, J.; Shahzad, A.; Farooq, A.; Kamran, M.; Khan, S.U.D.; Khan, S.U.D. Radiative heat transfer in Homann stagnation-point flow of hybrid nanofluid. Appl. Nanosci. 2020, 10, 5305–5314. [Google Scholar] [CrossRef]
- Khan, A.U.; Saleem, S.; Nadeem, S.; Alderremy, A.A. Analysis of unsteady non-axisymmetric Homann stagnation point flow of nanofluid and possible existence of multiple solutions. Physica A 2020, 554, 123920. [Google Scholar] [CrossRef]
- Mahapatra, T.R.; Sidui, S. Non-axisymmetric Homann stagnation-point flow of a viscoelastic fluid towards a fixed plate. Eur. J. Mech. B Fluids 2020, 79, 38–43. [Google Scholar] [CrossRef]
- Khan, M.; Sarfraz, M.; Ahmed, J.; Ahmad, L.; Fetecau, C. Non-axisymmetric Homann stagnation-point flow of Walter’s B nanofluid over a cylindrical disk. Appl. Math. Mech. 2020, 41, 725–740. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Symmetrical solutions of hybrid nanofluid stagnation-point flow in a porous medium. Int. Commun. Heat Mass Tran. 2022, 130, 105804. [Google Scholar] [CrossRef]
- Liao, S. Advances in the Homotopy Analysis Method, 1st ed.; World scientific press: Singapore, 2013; pp. 361–400. [Google Scholar]
- Farooq, U.; Zhao, Y.; Hayat, T.; Alsaedi, A.; Liao, S. Application of the HAM-based Mathematica package BVPh 2.0 on MHD Falkner-Skan flow of nano-fluid. Comput. Fluids 2015, 111, 69–75. [Google Scholar] [CrossRef]
- Dinarvand, S.; Rostami, M.N.; Pop, I. A novel hybridity model for TiO2-CuO/water hybrid nanofuid flow over a static/moving wedge or corner. Sci. Rep. 2019, 9, 16290. [Google Scholar] [CrossRef] [PubMed]
Properties | |||
---|---|---|---|
H2O | 997.1 | 0.613 | 4179 |
Cu | 8933 | 401 | 385 |
Al2O3 | 3970 | 40 | 765 |
Properties | Formulation |
---|---|
Heat capacitance | |
Density | |
Dynamic viscosity | (Spherical) |
(Non-spherical) | |
Thermal conductivity | |
Properties | Mathematical Relations |
---|---|
Equivalent density | |
Specific heat equivalent of nanoparticles at constant pressure | |
Solid volume fraction of first nanoparticle | |
Solid volume fraction of second nanoparticle | |
Equivalent volume fraction of nanoparticles |
Nanoparticle Shape | Sphere | Brick | Cylinder | Platelet | Disk |
---|---|---|---|---|---|
n | 3 | 3.7 | 4.8 | 5.7 | 8.3 |
1 | 0.81 | 0.62 | 0.52 | 0.36 | |
A | 1.9 | 13.5 | 37.1 | 14.6 | |
B | 471.4 | 904.4 | 612.6 | 123.3 |
(Ref. [50]) | HAM 20th | Relative Error(%) | (Ref. [50]) | HAM 20th | Relative Error(%) | (Ref. [50]) | HAM 20th | Relative Error(%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1.311938 | 1.311608 | 0.0252 | 1.311938 | 1.311608 | 0.0252 | 1.806069 | 1.810147 | 0.2258 |
5 | 3.038940 | 3.036096 | 0.0935 | −0.894909 | −0.902242 | 0.8194 | 3.938146 | 3.998352 | 0.2257 | ||
−5 | −0.894909 | −0.902242 | 0.8194 | 3.038940 | 3.036096 | 0.0935 | 3.074275 | 3.084240 | 0.3241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; You, X. Shape-Factor Impact on a Mass-Based Hybrid Nanofluid Model for Homann Stagnation-Point Flow in Porous Media. Nanomaterials 2023, 13, 984. https://doi.org/10.3390/nano13060984
Li S, You X. Shape-Factor Impact on a Mass-Based Hybrid Nanofluid Model for Homann Stagnation-Point Flow in Porous Media. Nanomaterials. 2023; 13(6):984. https://doi.org/10.3390/nano13060984
Chicago/Turabian StyleLi, Shiyuan, and Xiangcheng You. 2023. "Shape-Factor Impact on a Mass-Based Hybrid Nanofluid Model for Homann Stagnation-Point Flow in Porous Media" Nanomaterials 13, no. 6: 984. https://doi.org/10.3390/nano13060984
APA StyleLi, S., & You, X. (2023). Shape-Factor Impact on a Mass-Based Hybrid Nanofluid Model for Homann Stagnation-Point Flow in Porous Media. Nanomaterials, 13(6), 984. https://doi.org/10.3390/nano13060984