Enhanced Tribological Performance of Low-Friction Nanocomposite WSexSy/NP-W Coatings Prepared by Reactive PLD
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphology, Composition, and Microstructure of WSex/NP-W and WSexSy/NP-W Coatings
3.2. Nanostructure of WSexSy/NP-W Coatings
3.3. Chemical States of WSex/NP-W and WSexSy/NP-W Coatings
3.4. Frictional Behavior of WSex/NP-W and WSexSy/NP-W Coatings
3.5. Wear Behavior of WSex/NP-W and WSexSy/NP-W Coatings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stewart, T.B.; Fleischauer, P.D. Chemistry of Sputtered Molybdenum Disulfide Films. Inorg. Chem. 1982, 21, 2426–2431. [Google Scholar] [CrossRef]
- Spalvins, T. A review of resent advances in solid film lubrication. J. Vac. Sci. Technol. 1987, 5, 212–219. [Google Scholar] [CrossRef]
- Serles, P.; Gaber, K.; Pajovic, S.; Colas, G.; Filleter, T. High Temperature Microtribological Studies of MoS2 Lubrication for Low Earth Orbit. Lubricants 2020, 8, 49. [Google Scholar] [CrossRef]
- Pinate, S.; Leisner, P.; Zanella, C. Wear resistance and self-lubrication of electrodeposited Ni-SiC:MoS2 mixed particles composite coatings. Surf. Coat. Technol. 2021, 421, 127400. [Google Scholar] [CrossRef]
- Yaqub, T.B.; Vuchkov, T.; Bruyère, S.; Pierson, J.F.; Cavaleiro, A. A revised interpretation of the mechanisms governing low friction tribolayer formation in alloyed-TMD self-lubricating coatings. Appl. Surf. Sci. 2022, 571, 151302. [Google Scholar] [CrossRef]
- Grosseau-Poussard, J.L.; Garem, H.; Moine, P. High resolution transmission electron microscopy study of quasiamorphous MoSx coatings. Surf. Coat. Technol. 1996, 78, 19–25. [Google Scholar] [CrossRef]
- Ennaoui, A.; Diesner, K.; Fiechter, S.; Moser, J.H.; Lévy, F. Structural analysis of 2H–WS2 thin films by X-ray and TEM investigation. Thin Solid Film. 1997, 311, 146–150. [Google Scholar] [CrossRef]
- Domínguez-Meister, S.; Conte, M.; Igartua, A.; Rojas, T.C.; Sánchez-López, J.C. Self-Lubricity of WSex Nanocomposite Coatings. ACS Appl. Mater. Interfaces 2015, 7, 7979–7986. [Google Scholar] [CrossRef]
- Jiao Xu, J.; He, T.F.; Chai, L.Q.; Qiao, L.; Wang, P.; Liu, W.M. Growth and characteristics of self-assembled MoS2/Mo-S-C nanoperiod multilayers for enhanced tribological performance. Sci. Rep. 2016, 3, 25378. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xie, M.; Zhang, G.; Fan, X.; Li, X.; Zhu, M.; Wang, L. Structure and tribological behavior of Pb-Ti/MoS2 nanoscaled multilayer films deposited by magnetron sputtering method. Appl. Surf. Sci. 2018, 435, 48–54. [Google Scholar] [CrossRef]
- Hudec, T.; Bondarev, A.; Izai, V.; Sroba, V.; Satrapinskyy, L.; Roch, T.; Turiničová, V.; Grančič, B.; Polcar, T.; Mikula, M. Titanium doped MoSe2 coatings—Synthesis, structure, mechanical and tribological properties investigation. Appl. Surf. Sci. 2021, 568, 150990. [Google Scholar] [CrossRef]
- Gao, K.; Wang, Y.; Zhang, B.; Zhang, J. Effect of vacuum atomic oxygen irradiation on the tribological properties of fullerene-like carbon and MoS2 films. Tribol. Int. 2022, 170, 107499. [Google Scholar] [CrossRef]
- Romanov, R.I.; Fominski, D.V.; Demin, M.V.; Gritskevich, M.D.; Doroshina, N.V.; Volkov, V.S.; Fominski, V.Y. Tribological properties of WS2 thin films containing graphite-like carbon and Ni interlayers. Materials 2023, 16, 282. [Google Scholar] [CrossRef] [PubMed]
- Fominski, V.; Fominski, D.; Romanov, R.; Gritskevich, M.; Demin, M.; Shvets, P.; Maksimova, K.; Goikhman, A. Specific features of reactive pulsed laser deposition of solid lubricating nanocomposite Mo-S-C-H thin-film coatings. Nanomaterials 2020, 10, 2456. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, T.B.; Fernandes, F.; Al-Rjoub, A.; Cavaleiro, A. Mo-Se-N dry lubricant coatings as a universal solution for protecting surfaces of complex 3D parts. Mater. Lett. 2022, 316, 131967. [Google Scholar] [CrossRef]
- Simmonds, M.C.; Savan, A.; Pflüger, E.; Van Swygenhoven, H. Mechanical and Tribological Performance of MoS2 Co-sputtered Composites. Surf. Coat. Technol. 2000, 126, 15–24. [Google Scholar] [CrossRef]
- Savan, A.; Pflüger, E.; Goller, R.; Gissler, W. Use of Nanoscaled Multilayer and Compound Films to Realize a Soft Lubrication Phase Within a Hard, Wear-Resistant Matrix. Surf. Coat. Technol. 2000, 126, 159–165. [Google Scholar] [CrossRef]
- Zhang, P.; Fang, Y.; Dai, S.; Fu, Y.; Zhang, M.; Huang, M.; Hu, J. Preparation and characterization of MoS2-TiL/MoS2-TiH nano multilayer coating with excellent wear properties. Mater. Lett. 2016, 173, 35–38. [Google Scholar] [CrossRef]
- Nossa, A.; Cavaleiro, A. Mechanical behaviour of W–S–N and W–S–C sputtered coatings deposited with a Ti interlayer. Surf. Coat. Technol. 2003, 163–164, 552–560. [Google Scholar] [CrossRef]
- Noshiro, J.; Watanabe, S.; Sakurai, T.; Miyake, S. Friction properties of co-sputtered sulfide/DLC solid lubricating films. Surf. Coat. Technol. 2006, 200, 5849–5854. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.; Ji, L.; Ye, Y.; Chen, J.; Zhou, H. Preparation and properties of MoS2/a-C films for space tribology. J. Phys. D Appl. Phys. 2013, 46, 425301. [Google Scholar] [CrossRef]
- Cao, H.; De Hosson, J.; Pei, Y. Effect of carbon concentration and argon flow rate on the microstructure and triboperformance of magnetron sputtered WS2/a-C coatings. Surf. Coat. Technol. 2017, 332, 142–152. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Gao, M.; Kang, K.-H.; Shin, D.; Kim, D.-E. Superior lubrication of dense/porous-coupled nanoscale C/WS2 multilayer coating on ductile substrate. Appl. Surf. Sci. 2019, 476, 724–732. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.; Ji, L.; Ye, Y.; Chen, J.; Zhou, H. A long-lifetime MoS2/a-C:H nanoscale multilayer film with extremely low internal stress. Surf. Coat. Technol. 2013, 236, 438–443. [Google Scholar] [CrossRef]
- Berman, D.; Narayanan, B.; Cherukara, M.J.; Sankaranarayanan, S.; Erdemir, A.; Zinovev, A.; Sumant, A.V. Operando tribochemical formation of onion-like carbon leads to macroscale superlubricity. Nat. Commun. 2018, 9, 1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Zhang, Z.; Tian, P.; Gong, Z.; Zhang, J. Macro-scale superlow friction enabled when MoS2 flakes lubricate hydrogenated diamond-like carbon film. Ceram. Int. 2021, 47, 10980–10989. [Google Scholar] [CrossRef]
- Gong, Z.; Jia, X.; Ma, W.; Zhang, B.; Zhang, J. Hierarchical structure graphitic-like/MoS2 film as superlubricity material. Appl. Surf. Sci. 2017, 413, 381–386. [Google Scholar] [CrossRef]
- Cao, H.; Momand, J.; Syariati, A.; Wen, F.; Rudolf, P.; Xiao, P.; De Hosson, J.; Pei, Y. Temperature-Adaptive Ultralubricity of a WS2/a-C Nanocomposite Coating: Performance from Room Temperature up to 500 °C. ACS Appl. Mater. Interfaces 2021, 13, 28843–28854. [Google Scholar] [CrossRef]
- Sun, L.; Gao, K.; Jia, Q.; Bai, C.; Zhang, B.; Tan, X.; Zhang, J. Grown of superlubricity a-C:H/MoS2 film on 9Cr18Mo steel for industrial application. Diamond Relat. Mater. 2021, 117, 108479. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Zabinski, J.S. Supertough Wear-Resistant Coatings with “Chameleon” Surface Adaptation. Thin Solid Film. 2000, 370, 223–231. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Acharya, R.; Chattopadhyay, A.K.; Paul, S. Composition and Structure-Property Relationship of Low Friction, Wear Resistant TiN-MoSx Composite Coating Deposited by Pulsed Closed-Field Unbalanced Magnetron Sputtering. Surf. Coat. Technol. 2009, 203, 1565–1572. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Sheveyko, A.N.; Sorokin, D.I.; Lev, L.C.; Mavrin, B.N.; Kiryukhantsev-Korneev, P.V. Structure and Properties of Multi-Component and Multilayer TiCrBN/WSex Coatings Deposited by Sputtering of TiCrB and WSe2 Targets. Surf. Coat. Technol. 2008, 202, 5953–5961. [Google Scholar] [CrossRef]
- Donley, M.S.; Murray, P.T.; Barber, S.A.; Haas, T.W. Deposition and properties of MoS2 thin films grown by pulsed laser evaporation. Surf. Coat. Technol. 1988, 36, 329–340. [Google Scholar] [CrossRef]
- Fominskii, V.; Markeev, A.; Nevolin, V. Pulsed ion beams for modification of metal surface properties. Vacuum 1991, 42, 73–74. [Google Scholar] [CrossRef]
- Hu, J.J.; Zabinski, J.S.; Bultman, J.E.; Sanders, J.H.; Voevodin, A.A. Structure characterization of pulsed laser deposited MoSx–WSey composite films of tribological interests. Tribol. Lett. 2006, 24, 127–135. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Nevolin, V.N.; Smurov, I. Energy and dose characteristics of ion bombardment during pulsed laser deposition of thin films under pulsed electric field. J. Appl. Phys. 2004, 96, 2374–2380. [Google Scholar] [CrossRef]
- Fominski, V.; Demin, M.; Fominski, D.; Romanov, R.; Goikhman, A.; Maksimova, K. Comparative study of the structure, composition, and electrocatalytic performance of hydrogen evolution in MoSx~2+δ/Mo and MoSx~3+δ films obtained by pulsed laser deposition. Nanomaterials 2020, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.J.; Zabinski, J.S.; Bultman, J.E.; Sanders, J.H.; Voevodin, A.A. Encapsulated Nanoparticles Produced by Pulsed Laser Ablation of MoS2-Te Composite Target. Cryst. Growth Des. 2008, 8, 2603–2605. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Lobova, T.A.; Fominski, V.Y.; Kulinich, S.A.; Lyasotsky, I.V.; Petrzhik, M.I.; Levashov, E.A.; Moore, J.J. Structure and wear behavior of WSex, WSex/TiN, WSex/TiCN and WSex/TiSiN coatings. Surf. Coat. Technol. 2004, 183, 328–336. [Google Scholar] [CrossRef]
- Walck, S.D.; Zabinski, J.S.; Donley, M.S.; Bultman, J.E. Evolution of surface topography in pulsed-laser-deposited thin films of MoS2. Surf. Coat. Technol. 1993, 62, 412–416. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Romanov, R.I.; Gusarov, A.V.; Celis, J.-P. Pulsed laser deposition of antifriction thin-film MoSex coatings at the different vacuum conditions. Surf. Coat. Technol. 2007, 201, 7813–7821. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Romanov, R.I.; Fominski, D.V.; Dzhumaev, P.S.; Troyan, I.A. Normal and grazing incidence pulsed laser deposition of nanostructured MoSx hydrogen evolution catalysts from a MoS2 target. Opt. Laser Technol. 2018, 102, 74–84. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Grigoriev, S.N.; Celis, J.-P.; Romanov, R.I.; Oshurko, V.B. Structure and mechanical properties of W-Se-C/diamond-like carbon and W-Se/diamond-like carbon bi-layer coatings prepared by pulsed laser deposition. Thin Solid Film. 2012, 520, 6467–6483. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Grigoriev, S.N.; Gnedovets, A.G.; Romanov, R.I. On the Mechanism of Encapsulated Particle Formation during Pulsed Laser Deposition of WSex Thin-Film Coatings. Technical Phys. Lett. 2013, 39, 312–315. [Google Scholar] [CrossRef]
- Giuffredi, G.; Perego, A.; Mazzolini, P.; Prato, M.; Fumagalli, F.; Lin, Y.; Liu, C.; Ivanov, I.N.; Belianinov, A.; Colombo, M.; et al. Non-Equilibrium Synthesis of Highly Active Nanostructured, Oxygen-Incorporated Amorphous Molybdenum Sulfide HER Electrocatalyst. Small 2020, 16, 2004047. [Google Scholar] [CrossRef]
- Savan, A.; Haefke, H.; Simmonds, M.C.; Constable, C.P. Microstructure, chemistry, and tribological performance of MoSx /WSey co-sputtered composites. J. Vac. Sci. Technol. A 2002, 20, 1682. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Romanov, R.I.; Fominski, D.V.; Shelyakov, A.V. Regulated growth of quasi-amorphous MoSx thin-film hydrogen evolution catalysts by pulsed laser deposition of Mo in reactive H2S gas. Thin Solid Film. 2017, 642, 58–68. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Fominski, V.Y.; Romanov, R.I.; Gnedovets, A.G.; Volosova, M.A. Shadow masked pulsed laser deposition of WSex films: Experiment and modeling. Appl. Surf. Sci. 2013, 282, 607–614. [Google Scholar] [CrossRef]
- Dominguez-Meister, S.; Justo, A.; Sanchez-Lopez, J.C. Synthesis and tribological properties of WSex films prepared by magnetron sputtering. J. Mater. Chem. Phys. 2013, 142, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Teo, M.; Wong, P.C.; Zhu, L.; Susac, D.; Campbell, S.A.; Mitchel, K.A.R.; Parsons, R.R.; Bizzotto, D. Characterization of a Co–Se thin film by scanning Auger microscopy and Raman spectroscopy. Appl. Surf. Sci. 2006, 253, 1130–1134. [Google Scholar] [CrossRef]
- Quintana, M.; Haro-Poniatowski, E.; Morales, J.; Batina, N. Synthesis of selenium nanoparticles by pulsed laser ablation. Appl. Surf. Sci. 2002, 195, 175–186. [Google Scholar] [CrossRef]
- Martin-Litas, I.; Vinatier, P.; Levasseur, A.; Dupin, J.C.; Gonbeau, D.; Weill, F. Characterisation of r.f. sputtered tungsten disulfide and oxysulfide thin films. Thin Solid Film. 2002, 416, 1–9. [Google Scholar] [CrossRef]
- Li, J.; Hong, W.; Jian, C.; Cai, Q.; Liu, W. Seamless tungsten disulfide-tungsten heterojunction with abundant exposed active sites for efficient hydrogen evolution. Appl. Catal. 2019, 244, 320–326. [Google Scholar] [CrossRef]
- Romanov, R.; Fominski, V.; Demin, M.; Fominski, D.; Rubinkovskaya, O.; Novikov, S.; Volkov, V.; Doroshina, N. Application of pulsed laser deposition in the preparation of a promising MoSx/WSe2/C(B) photocathode for photo-assisted electrochemical hydrogen e volution. Nanomaterials 2021, 11, 1461. [Google Scholar] [CrossRef]
- Murali, K.R.; Thilakavathy, T.; Vasantha, S.; Oomen, R. Characteristics of pulsed plated CdSxSe1-x films. Chalcogenide Lett. 2008, 5, 165–170. [Google Scholar]
- Fominski, V.Y.; Romanov, R.I.; Fominski, D.V.; Shelyakov, A.V. Preparation of MoSex>3/Mo-NPs catalytic films for enhanced hydrogen evolution by pulsed laser ablation of MoSe2 target. Nucl. Instr. Meth. Phys. Res. B 2018, 416, 30–40. [Google Scholar] [CrossRef]
- Van Overschelde, O.; Guisbiers, G. Photo-fragmentation of selenium powder by Excimer laser ablation in liquids. Opt. Laser Technol. 2015, 73, 156–161. [Google Scholar] [CrossRef]
- Gong, Q.; Cheng, L.; Liu, C.; Zhang, M.; Feng, Q.; Ye, H.; Zeng, M.; Xie, L.; Liu, Z.; Li, Y. Ultrathin MoS2(1-x)Se2x Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction. ACS Catal. 2015, 5, 2213–2219. [Google Scholar] [CrossRef]
- Fominski, V.; Romanov, R.; Fominski, D.; Soloviev, A.; Rubinkovskaya, O.; Demin, M.; Maksimova, K.; Shvets, P.; Goikhman, A. Performance and Mechanism of Photoelectrocatalytic Activity of MoSx/WO3 Heterostructures Obtained by Reactive Pulsed Laser Deposition for Water Splitting. Nanomaterials 2020, 10, 871. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, F.; Li, W.; Li, Y.; Liu, C.; Zhao, Z.; Shan, Y.; Ji, Y.; Sun, L. Identification of M-NH2-NH2 Intermediate and Rate Determining Step for Nitrogen Reduction with Bioinspired Sulfur-Bonded FeW Catalyst. Angew. Chem. Int. Ed. 2021, 60, 2–13. [Google Scholar] [CrossRef]
- Domínguez-Meister, S.; Rojas, T.C.; Brizuela, M.; Sánchez-López, J.C. Solid lubricant behavior of MoS2 and WSe2-based nanocomposite coatings. Sci. Technol. Adv. Mater. 2017, 18, 122–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evaristo, M.; Polcar, T.; Cavaleiro, A. Synthesis and properties of W–Se–C coatings deposited by PVD in reactive and non-reactive processes. Vacuum 2009, 83, 1262–1265. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fominski, V.; Fominski, D.; Demin, M.; Romanov, R.; Goikhman, A. Enhanced Tribological Performance of Low-Friction Nanocomposite WSexSy/NP-W Coatings Prepared by Reactive PLD. Nanomaterials 2023, 13, 1122. https://doi.org/10.3390/nano13061122
Fominski V, Fominski D, Demin M, Romanov R, Goikhman A. Enhanced Tribological Performance of Low-Friction Nanocomposite WSexSy/NP-W Coatings Prepared by Reactive PLD. Nanomaterials. 2023; 13(6):1122. https://doi.org/10.3390/nano13061122
Chicago/Turabian StyleFominski, Vyacheslav, Dmitry Fominski, Maxim Demin, Roman Romanov, and Alexander Goikhman. 2023. "Enhanced Tribological Performance of Low-Friction Nanocomposite WSexSy/NP-W Coatings Prepared by Reactive PLD" Nanomaterials 13, no. 6: 1122. https://doi.org/10.3390/nano13061122
APA StyleFominski, V., Fominski, D., Demin, M., Romanov, R., & Goikhman, A. (2023). Enhanced Tribological Performance of Low-Friction Nanocomposite WSexSy/NP-W Coatings Prepared by Reactive PLD. Nanomaterials, 13(6), 1122. https://doi.org/10.3390/nano13061122