Synthesis of Nanocomposites and Catalysis Applications II
Funding
Conflicts of Interest
References
- Smal, E.; Bespalko, Y.; Arapova, M.; Fedorova, V.; Valeev, K.; Eremeev, N.; Sadovskaya, E.; Krieger, T.; Glazneva, T.; Sadykov, V.; et al. Carbon Formation during Methane Dry Reforming over Ni-Containing Ceria-Zirconia Catalysts. Nanomaterials 2022, 12, 3676. [Google Scholar] [CrossRef]
- Pakharukova, V.P.; Potemkin, D.I.; Rogozhnikov, V.N.; Stonkus, O.A.; Gorlova, A.M.; Nikitina, N.A.; Suprun, E.A.; Brayko, A.S.; Rogov, V.A.; Snytnikov, P.V. Effect of Ce/Zr Composition on Structure and Properties of Ce1−xZrxO2 Oxides and Related Ni/Ce1−xZrxO2 Catalysts for CO2 Methanation. Nanomaterials 2022, 12, 3207. [Google Scholar] [CrossRef] [PubMed]
- Escorcia-Díaz, D.; García-Mora, S.; Rendón-Castrillón, L.; Ramírez-Carmona, M.; Ocampo-López, C. Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. Nanomaterials 2023, 13, 2586. [Google Scholar] [CrossRef]
- Nesterov, N.; Pakharukova, V.; Cherepanova, S.; Yakushkin, S.; Gerasimov, E.; Balaev, D.; Semenov, S.; Dubrovskii, A.; Martyanov, O. Synthesis of Co-Ni Alloy Particleswith the Structure of a Solid Substitution Solution by Precipitation in a Supercritical Carbon Dioxide. Nanomaterials 2022, 12, 4366. [Google Scholar] [CrossRef]
- Rodríguez-da-Silva, S.; El-Hachimi, A.G.; López-de-Luzuriaga, J.M.; Rodríguez-Castillo, M.; Monge, M. Boosting the Catalytic Performance of AuAg Alloyed Nanoparticles Grafted on MoS2 Nanoflowers through NIR-Induced Light-to-Thermal Energy Conversion. Nanomaterials 2023, 13, 1074. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.T.; Lam, N.D.; Linh, D.C.; Mai, N.T.; Chang, H.; Han, S.-H.; Oanh, V.T.K.; Pham, A.T.; Patil, S.A.; Tung, N.T.; et al. Escalating Catalytic Activity for Hydrogen Evolution Reaction on MoSe2@Graphene Functionalization. Nanomaterials 2023, 13, 2139. [Google Scholar] [CrossRef] [PubMed]
- Kovalevskiy, N.; Svintsitskiy, D.; Cherepanova, S.; Yakushkin, S.; Martyanov, O.; Selishcheva, S.; Gribov, E.; Kozlov, D.; Selishchev, D. Visible-Light-Active N-Doped TiO2 Photocatalysts: Synthesis from TiOSO4, Characterization, and Enhancement of Stability Via Surface Modification. Nanomaterials 2022, 12, 4146. [Google Scholar] [CrossRef] [PubMed]
- Kurenkova, A.Y.; Yakovleva, A.Y.; Saraev, A.A.; Gerasimov, E.Y.; Kozlova, E.A.; Kaichev, V.V. Copper-Modified Titania-Based Photocatalysts for the Efficient Hydrogen Production under UV and Visible Light from Aqueous Solutions of Glycerol. Nanomaterials 2022, 12, 3106. [Google Scholar] [CrossRef] [PubMed]
- Ullah, K.; Oh, W.-C. Fabrication of Novel Heterostructure-Functionalized Graphene-Based TiO2-Sr-Hexaferrite Photocatalyst for Environmental Remediation. Nanomaterials 2023, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Seong, S.; Jin, S.; Kim, J.; Jeong, Y.; Noh, J. Strainer-Separable TiO2 on Halloysite Nanocomposite-Embedded Alginate Capsules with Enhanced Photocatalytic Activity for Degradation of Organic Dyes. Nanomaterials 2022, 12, 2361. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.B.; Azizi, S.; Moghadam, M.T.T.; Seifi, M.; Rozati, S.M.; Di Bartolomeo, A. MnCo2O4/NiCo2O4/rGO as a Catalyst Based on Binary Transition Metal Oxide for the Methanol Oxidation Reaction. Nanomaterials 2022, 12, 4072. [Google Scholar] [CrossRef]
- Askari, M.B.; Beitollahi, H.; Di Bartolomeo, A. Methanol and Ethanol Electrooxidation on ZrO2/NiO/rGO. Nanomaterials 2023, 13, 679. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimov, E. Synthesis of Nanocomposites and Catalysis Applications II. Nanomaterials 2023, 13, 3054. https://doi.org/10.3390/nano13233054
Gerasimov E. Synthesis of Nanocomposites and Catalysis Applications II. Nanomaterials. 2023; 13(23):3054. https://doi.org/10.3390/nano13233054
Chicago/Turabian StyleGerasimov, Evgeny. 2023. "Synthesis of Nanocomposites and Catalysis Applications II" Nanomaterials 13, no. 23: 3054. https://doi.org/10.3390/nano13233054
APA StyleGerasimov, E. (2023). Synthesis of Nanocomposites and Catalysis Applications II. Nanomaterials, 13(23), 3054. https://doi.org/10.3390/nano13233054