A Super Anticorrosive Ultrathin Film by Restarting the Native Passive Film on 316L Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
3. Results
3.1. Structure and Chemical Composition of Films
3.2. Electrochemical Behavior and Long-Term Protectiveness
3.3. Effect of Cr Content on the Enhancement of Corrosion Resistance
3.4. Improvement of Film Quality by Plasma Processing
3.5. Electrically-Driven Growth of the Film at Low Temperature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, U.R. The Passivity of Iron. Nature 1931, 128, 1062–1065. [Google Scholar] [CrossRef]
- Siket, C.; Tillner, N.; Mardare, A.; Reuveny, A.; Grill, C.; Hartmann, F.; Kettlgruber, G.; Moser, R.; Kollender, J.; Someya, T.; et al. Direct writing of anodic oxides for plastic electronics. NPJ Flex. Electron. 2018, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Kushima, A.; Han, W.; Xin, H.; Li, J. Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature. Nano Lett. 2018, 18, 2492–2497. [Google Scholar] [CrossRef] [PubMed]
- Hassel, A.; Diesing, D. Modification of Trap Distributions in Anodic Aluminum Tunnel Barriers. J. Electrochem. Soc. 2007, 154, C558–C561. [Google Scholar] [CrossRef]
- Tsuchiya, M.; Sankaranarayanan, S.; Ramanathan, S. Photon-assisted oxidation and oxide thin film synthesis: A review. Prog. Mater. Sci. 2009, 54, 981–1057. [Google Scholar] [CrossRef]
- Chang, C.-L.; Engelhard, M.; Ramanathan, S. Superior nanoscale passive oxide layers synthesized under photon irradiation for environmental protection. Appl. Phys. Lett. 2008, 92, 263103. [Google Scholar] [CrossRef]
- Nanjo, H.; Suzuki, Y.; Hayasaka, J.; Hassan, F.; Venkatachalam, S.; Nishioka, M.; Kanakubo, M.; Aida, T.; Onagawa, J. Ozone-oxygen gas enhanced passivation of pure iron. Electrochim. Acta 2010, 55, 4685–4693. [Google Scholar] [CrossRef]
- Peter, R.; Saric, I.; Piltaver, I.; Badovinac, I.; Petravic, M. Oxide formation on chromium metal surfaces by low-energy oxygen implantation at room temperature. Thin Solid Film. 2017, 636, 225–231. [Google Scholar] [CrossRef]
- Saric, I.; Peter, R.; Petravic, M. Oxidation of Cobalt by Oxygen Bombardment at Room Temperature. J. Phys. Chem. C. 2016, 120, 22421–22425. [Google Scholar] [CrossRef]
- Wang, Z.; Paschalidou, E.-M.; Seyeux, A.; Zanna, S.; Maurice, V.; Marcus, P. Mechanisms of Cr and Mo Enrichments in the Passive Oxide Film on 316L Austenitic Stainless Steel. Front. Mater. 2019, 6, 232. [Google Scholar] [CrossRef]
- Kogelschatz, U.; Eliasson, B.; Egli, W. Dielectric-Barrier Discharges. Principle and Applications. J. Phys. IV 1997, 7, C4-47–C4-66. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.; Zhan, Z.; Xiao, K.; Fang, X.; Li, Z. Effect of Long-Term Pre-oxidation on the Corrosion Rate of 316L Stainless Steel in a High-Temperature Water Environment. J. Mater. Eng. Perform. 2022, 31, 7935–7944. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Prog. Mater. Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Hamada, E.; Yamada, K.; Nagoshi, M.; Makiishi, N.; Sato, K.; Ishii, T.; Fukuda, K.; Ishikawa, S.; Ujiro, T. Direct imaging of native passive film on stainless steel by aberration corrected STEM. Corros. Sci. 2010, 52, 3851–3854. [Google Scholar] [CrossRef]
- Wang, Z.; Di-Franco, F.; Seyeux, A.; Zanna, S.; Maurice, V.; Marcus, P. Passivation-induced physicochemical alterations of the native surface oxide film on 316L austenitic stainless steel. J. Electrochem. Soc. 2019, 166, C3376–C3388. [Google Scholar] [CrossRef]
- Popova, I.; Zhukov, V.; Yates, J., Jr. Electrostatic field enhancement of Al(111) oxidation. Phys. Rev. Lett. 2002, 89, 276101. [Google Scholar] [CrossRef]
- Nowak, C.; Kirchheim, R.; Schmitz, G. Electric-field-induced low temperature oxidation of tungsten nanowires. Appl. Phys. Lett. 2006, 89, 143104. [Google Scholar] [CrossRef]
- Cabrera, N.; Mott, N. Theory of the oxidation of metals. Prog. Phys. 1949, 12, 163–184. [Google Scholar] [CrossRef]
- Fehlner, F.; Mott, N. Low-temperature oxidation. Oxid. Met. 1970, 2, 59–99. [Google Scholar] [CrossRef]
- Cai, N.; Zhou, G.; Müller, K.; Starr, D.E. Temperature and pressure dependent Mott potentials and their influence on self-limiting oxide film growth. Appl. Phys. Lett. 2012, 101, 171605. [Google Scholar] [CrossRef]
- Zhdanov, V.; Kasemo, B. Cabrera-Mott kinetics of oxidation of metal nanowires. Appl. Phys. Lett. 2012, 100, 243105. [Google Scholar] [CrossRef]
- Skalny, J.; Orszagh, J.; Mason, N.; Rees, J.; Aranda-Gonzalvo, Y.; Whitmore, T. Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure. Int. J. Mass Spectrom. 2008, 272, 12–21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Li, Y.; Kang, Z.; Zhang, X.; Wu, S.; Shen, J.; Zhou, G. A Super Anticorrosive Ultrathin Film by Restarting the Native Passive Film on 316L Stainless Steel. Nanomaterials 2023, 13, 367. https://doi.org/10.3390/nano13020367
Ren Y, Li Y, Kang Z, Zhang X, Wu S, Shen J, Zhou G. A Super Anticorrosive Ultrathin Film by Restarting the Native Passive Film on 316L Stainless Steel. Nanomaterials. 2023; 13(2):367. https://doi.org/10.3390/nano13020367
Chicago/Turabian StyleRen, Ying, Yuchen Li, Zhenwei Kang, Xiaoke Zhang, Shaojun Wu, Jun Shen, and Genshu Zhou. 2023. "A Super Anticorrosive Ultrathin Film by Restarting the Native Passive Film on 316L Stainless Steel" Nanomaterials 13, no. 2: 367. https://doi.org/10.3390/nano13020367
APA StyleRen, Y., Li, Y., Kang, Z., Zhang, X., Wu, S., Shen, J., & Zhou, G. (2023). A Super Anticorrosive Ultrathin Film by Restarting the Native Passive Film on 316L Stainless Steel. Nanomaterials, 13(2), 367. https://doi.org/10.3390/nano13020367