Formation of a Nanorod-Assembled TiO2 Actinomorphic-Flower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, R.; Ji, Z.; Xie, S.; Chen, J.; Zhang, J.; Cao, Y.; Wang, J. Fabrication of {001}-facet enriched anatase TiO2/TiOF2 heterostructures with controllable morphology for enhanced photocatalytic activity. Mater. Today Commun. 2021, 26, 102060. [Google Scholar] [CrossRef]
- Hamed, N.K.A.; Ahmad, M.K.; Hairom, N.H.H.; Faridah, A.B.; Mamat, M.H.; Mohamed, A.; Suriani, A.B.; Nafarizal, N.; Fazli, F.I.M.; Mokhtar, S.M.; et al. Dependence of photocatalysis on electron trapping in Ag-doped flowerlike rutile-phase TiO2 film by facile hydrothermal method. Appl. Surf. Sci. 2020, 534, 147571. [Google Scholar] [CrossRef]
- Ying, C.; Shi, C.; Lv, K.; Ma, C.; Guo, F.; Fu, H. Fabrication of Sb2S3 sensitized TiO2 nanorod array solar cells using spin-coating assisted successive ionic layer absorption and reaction. Mater. Today Commun. 2019, 19, 393–395. [Google Scholar]
- Muqoyyanah; Suriani, A.B.; Mohamed, A.; Hashim, N.; Mamat, M.H.; Ahmad, M.K.; Othman, M.H.D.; Mohamed, M.A.; Nurhafizah, M.D.; Birowosuto, M.D.; et al. Effects of TiO2 phase and nanostructures as photoanode on the performance of dye-sensitized solar cells. Bull. Mater. Sci. 2021, 44, 10. [Google Scholar] [CrossRef]
- Cappelli, I.; Fort, A.; Lo Grasso, A.; Panzardi, E.; Mugnaini, M.; Vignoli, V. RH Sensing by Means of TiO2 Nanoparticles: A Comparison among Different Sensing Techniques Based on Modeling and Chemical/Physical Interpretation. Chemosensors 2020, 8, 89. [Google Scholar] [CrossRef]
- Musa, M.Z.; Mamat, M.H.; Vasimalai, N.; Subki, A.S.R.A.; Hassan, H.; Malek, M.F.; Ahmad, M.Y.; Rusop, M. Recent Progress on Titanium Dioxide-Based Humidity Sensor: Structural Modification, Doping, and Composite Approach. In Enabling Industry 4.0 through Advances in Manufacturing and Materials; Springer: Singapore, 2022. [Google Scholar]
- Chen, K.; Zhang, H.; Tong, H.; Wang, L.; Tao, L.; Wang, K.; Zhang, Y.; Zhou, X. Down-conversion Ce-doped TiO2 nanorod arrays and commercial available carbon based perovskite solar cells: Improved performance and UV photostability. Int. J. Hydrog. Energy 2021, 46, 5677–5688. [Google Scholar]
- Jiang, Y.; Pang, H.; Sun, X.; Yang, Z.; Ding, Y.; Liu, Z.; Zhang, P. TiO2 nanobelts with ultra-thin mixed C/SiOx coating as high-performance photo/photoelectrochemical hydrogen evolution materials. Appl. Surf. Sci. 2021, 537, 147861. [Google Scholar] [CrossRef]
- Septiani, N.L.W.; Saputro, A.G.; Kaneti, Y.V.; Maulana, A.L.; Fathurrahman, F.; Lim, H.; Yuliarto, B.; Nugraha; Dipojono, H.K.; Golberg, D.; et al. Hollow Zinc Oxide Microsphere–Multiwalled Carbon Nanotube Composites for Selective Detection of Sulfur Dioxide. ACS Appl. Nano Mater. 2020, 3, 8982–8996. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Chen, X.; Lu, G.; Song, X.; Tian, J.; Cui, H.; Zhang, G.; Gao, K. SnO2 core-shell hollow microspheres co-modification with Au and NiO nanoparticles for acetone gas sensing. Powder Technol. 2020, 364, 159–166. [Google Scholar] [CrossRef]
- Chammingkwan, P.; Mai, L.T.T.; Ikeda, T.; Mohan, P. Nanostructured magnesium oxide microspheres for efficient carbon dioxide capture. J. CO2 Util. 2021, 51, 101652. [Google Scholar]
- Shu, Y.; Zhao, T.; Li, X.; Yang, L.; Cao, S. Enhanced electromagnetic wave absorption properties integrating diverse loss mechanism of 3D porous Ni/NiO microspheres. J. Alloy. Compd. 2022, 897, 163227. [Google Scholar] [CrossRef]
- Parimon, N.; Mamat, M.H.; Shameem Banu, I.B.; Vasimalai, N.; Ahmad, M.K.; Suriani, A.B.; Mohamed, A.; Rusop, M. Fabrication, structural, optical, electrical, and humidity sensing characteristics of hierarchical NiO nanosheet/nanoball-flower-like structure films. J. Mater. Sci. Mater. Electron. 2020, 31, 11673–11687. [Google Scholar]
- Lan, K.; Wang, R.; Zhang, W.; Zhao, Z.; Elzatahry, A.; Zhang, X.; Liu, Y.; Al-Dhayan, D.; Xia, Y.; Zhao, D. Mesoporous TiO2 Microspheres with Precisely Controlled Crystallites and Architectures. Chem 2018, 4, 2436–2450. [Google Scholar]
- Arjunkumar, B.; Ramalingam, G.; Ramesh, M.; Ponraj, J.S.; Rao, K.V. Investigation of uni-directional nanorods composed microspheres and branched TiO2 nanorods towards solar cell application. Mater. Lett. 2020, 273, 127900. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, G.; Huo, J.; Li, J.; Liu, Y.; Guo, S. Flower-like TiO2 hollow microspheres with mixed-phases for high-pseudocapacitive lithium storage. J. Alloy. Compd. 2022, 902, 163730. [Google Scholar]
- Huai, X.; Rizzi, G.A.; Wang, Y.; Qi, Q.; Granozzi, G.; Fu, W.; Zhang, Z. Suppressed charge carrier trap states and double photon absorption in substitutional Ta-doped TiO2-NT array. Nano Today 2022, 43, 101407. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Chen, K.-T.; Lin, L.-Y.; Wu, W.-Y.; Liang, L.-S.; Gao, P.; Qiu, Y.; Zhang, X.-Y.; Huang, P.-H.; Lien, S.-Y.; et al. Tantalum-Doped TiO2 Prepared by Atomic Layer Deposition and Its Application in Perovskite Solar Cells. Nanomaterials 2021, 11, 1504. [Google Scholar] [CrossRef]
- Nitta, A.; Takashima, M.; Murakami, N.; Takase, M.; Ohtani, B. Reversed double-beam photoacoustic spectroscopy of metal-oxide powders for estimation of their energy-resolved distribution of electron traps and electronic-band structure. Electrochim. Acta 2018, 264, 83–90. [Google Scholar] [CrossRef]
- Kobielusz, M.; Nitta, A.; Macyk, W.; Ohtani, B. Combined Spectroscopic Methods of Determination of Density of Electronic States: Comparative Analysis of Diffuse Reflectance Spectroelectrochemistry and Reversed Double-Beam Photoacoustic Spectroscopy. J. Phys. Chem. Lett. 2021, 12, 3019–3025. [Google Scholar] [CrossRef] [PubMed]
- Suriani, A.B.; Alfarisa, S.; Mohamed, A.; Isa, I.M.; Kamari, A.; Hashim, N.; Mamat, M.H.; Mohamed, A.R.; Rusop, M. Quasi-aligned carbon nanotubes synthesised from waste engine oil. Mater. Lett. 2015, 139, 220–223. [Google Scholar] [CrossRef]
- Malek, M.F.; Robaiah, M.; Suriani, A.B.; Mamat, M.H.; Ahmad, M.K.; Soga, T.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Aslam, M.; et al. The utilization of waste cooking palm oil as a green carbon source for the growth of multilayer graphene. J. Aust. Ceram. Soc. 2021, 57, 347–358. [Google Scholar] [CrossRef]
- Jeong, H.; Noh, Y.; Lee, D. Highly stable and sensitive resistive flexible humidity sensors by means of roll-to-roll printed electrodes and flower-like TiO2 nanostructures. Ceram. Int. 2019, 45, 985–992. [Google Scholar]
- Saqib, M.; Ali Khan, S.; Mutee Ur Rehman, H.M.; Yang, Y.; Kim, S.; Rehman, M.M.; Young Kim, W. High-Performance Humidity Sensor Based on the Graphene Flower/Zinc Oxide Composite. Nanomaterials 2021, 11, 242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Chang, H.; Li, P.; Liu, R.; Xue, Q. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B Chem. 2016, 225, 233–240. [Google Scholar] [CrossRef]
- Mohamed Zahidi, M.; Mamat, M.H.; Malek, M.F.; Yaakob, M.K.; Ahmad, M.K.; Abu Bakar, S.; Mohamed, A.; A Subki, A.S.R.; Mahmood, M.R. Evaluating Different TiO2 Nanoflower-Based Composites for Humidity Detection. Sensors 2022, 22, 5794. [Google Scholar] [CrossRef]
- Guo, L.; Li, X.; Li, W.; Gou, C.; Zheng, M.; Zhang, Y.; Chen, Z.; Hong, Y. High-sensitive humidity sensor based on MoS2/graphene oxide quantum dot nanocomposite. Mater. Chem. Phys. 2022, 287, 126146. [Google Scholar] [CrossRef]
- Li, X.; Zhuang, Z.; Qi, D.; Zhao, C. High sensitive and fast response humidity sensor based on polymer composite nanofibers for breath monitoring and non-contact sensing. Sens. Actuators B Chem. 2021, 330, 129239. [Google Scholar] [CrossRef]
- Yao, X.; Chen, L.; Luo, Z.; Ye, C.; Liang, F.; Yang, T.; Liu, X.; Tian, X.; Bi, H.; Wang, C.; et al. High-performance flexible humidity sensors for breath detection and non-touch switches. Nano Sel. 2022, 3, 1168–1177. [Google Scholar] [CrossRef]
- Yusoff, M.M.; Mamat, M.H.; Abdullah, M.A.R.; Ismail, A.S.; Malek, M.F.; Zoolfakar, A.S.; Al Junid, S.A.M.; Suriani, A.B.; Mohamed, A.; Ahmad, M.K.; et al. Coupling heterostructure of thickness-controlled nickel oxide nanosheets layer and titanium dioxide nanorod arrays via immersion route for self-powered solid-state ultraviolet photosensor applications. Measurement 2020, 149, 106982. [Google Scholar]
- Hameed, T.A.; Azab, A.A.; Ibrahim, R.S.; Rady, K.E. Optimization, structural, optical and magnetic properties of TiO2/CoFe2O4 nanocomposites. Ceram. Int. 2022, 48, 20418–20425. [Google Scholar]
- Chen, X.; Peng, X.; Jiang, L.; Yuan, X.; Fei, J.; Zhang, W. Photocatalytic removal of antibiotics by MOF-derived Ti3+- and oxygen vacancy-doped anatase/rutile TiO2 distributed in a carbon matrix. Chem. Eng. J. 2022, 427, 130945. [Google Scholar] [CrossRef]
- Samriti; Prateek; Joshi, M.C.; Gupta, R.K.; Prakash, J. Hydrothermal synthesis and Ta doping of TiO2 nanorods: Effect of soaking time and doping on optical and charge transfer properties for enhanced SERS activity. Mater. Chem. Phys. 2022, 278, 125642. [Google Scholar] [CrossRef]
- Raguram, T.; Rajni, K.S. Synthesis and characterisation of Cu-Doped TiO2 nanoparticles for DSSC and photocatalytic applications. Int. J. Hydrog. Energy 2022, 47, 4674–4689. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, W.; Wu, P. Electronic structure and optical properties of Ta-doped and (Ta, N)-codoped SrTiO3 from hybrid functional calculations. J. Appl. Phys. 2017, 121, 075102. [Google Scholar]
- Takci, D.K. Synthesis, characterization and dielectric properties of rutile TiO2 nanoflowers. J. Cryst. Growth 2022, 578, 126442. [Google Scholar] [CrossRef]
- Ranjan, R.; Prakash, A.; Singh, A.; Singh, A.; Garg, A.; Gupta, R.K. Effect of tantalum doping in a TiO2 compact layer on the performance of planar spiro-OMeTAD free perovskite solar cells. J. Mater. Chem. A 2018, 6, 1037–1047. [Google Scholar] [CrossRef]
- Hu, W.; Lau, K.; Liu, Y.; Withers, R.L.; Chen, H.; Fu, L.; Gong, B.; Hutchison, W. Colossal Dielectric Permittivity in (Nb + Al) Codoped Rutile TiO2 Ceramics: Compositional Gradient and Local Structure. Chem. Mater. 2015, 27, 4934–4942. [Google Scholar] [CrossRef]
- Liu, G.; Fan, H.; Xu, J.; Liu, Z.; Zhao, Y. Colossal permittivity and impedance analysis of niobium and aluminum co-doped TiO2 ceramics. RSC Adv. 2016, 6, 48708–48714. [Google Scholar] [CrossRef]
- Singh, N.; Prakash, J.; Misra, M.; Sharma, A.; Gupta, R.K. Dual Functional Ta-Doped Electrospun TiO2 Nanofibers with Enhanced Photocatalysis and SERS Detection for Organic Compounds. ACS Appl. Mater. Interfaces 2017, 9, 28495–28507. [Google Scholar] [CrossRef]
- Kaleji, B.K.; Sarraf-Mamoory, R.; Fujishima, A. Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films. Mater. Chem. Phys. 2012, 132, 210–215. [Google Scholar] [CrossRef]
- Yang, L.; Feng, N.; Deng, F. Aluminum-Doped TiO2 with Dominant {001} Facets: Microstructure and Property Evolution and Photocatalytic Activity. J. Phys. Chem. C 2022, 126, 5555–5563. [Google Scholar] [CrossRef]
- Chen, H.; Wu, T.; Li, X.; Lu, S.; Zhang, F.; Wang, Y.; Zhao, H.; Liu, Q.; Luo, Y.; Asiri, A.M.; et al. Modulating Oxygen Vacancies of TiO2 Nanospheres by Mn-Doping to Boost Electrocatalytic N2 Reduction. ACS Sustain. Chem. Eng. 2021, 9, 1512–1517. [Google Scholar] [CrossRef]
- Si, J.; Wang, Y.; Xia, X.; Peng, S.; Wang, Y.; Xiao, S.; Zhu, L.; Bao, Y.; Huang, Z.; Gao, Y. Novel quantum dot and nano-sheet TiO2 (B) composite for enhanced photocatalytic H2—Production without Co-Catalyst. J. Power Sources 2017, 360, 353–359. [Google Scholar] [CrossRef]
- Tashkandi, N.Y.; Albukhari, S.M.; Ismail, A.A. Mesoporous TiO2 enhanced by anchoring Mn3O4 for highly efficient photocatalyst toward photo-oxidation of ciprofloxacin. Opt. Mater. 2022, 127, 112274. [Google Scholar] [CrossRef]
- Matouk, Z.; Islam, M.; Gutiérrez, M.; Pireaux, J.J.; Achour, A. X-ray Photoelectron Spectroscopy (XPS) Analysis of Ultrafine Au Nanoparticles Supported over Reactively Sputtered TiO2 Films. Nanomaterials 2022, 12, 3692. [Google Scholar] [CrossRef] [PubMed]
- Rui, Y.; Li, Y.; Zhang, Q.; Wang, H. Facile synthesis of rutile TiO2 nanorod microspheres for enhancing light-harvesting of dye-sensitized solar cells. CrystEngComm 2013, 15, 1651–1656. [Google Scholar] [CrossRef]
- Ohtani, B.; Ogawa, Y.; Nishimoto, S.-i. Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions. J. Phys. Chem. B 1997, 101, 3746–3752. [Google Scholar] [CrossRef]
- Carey, J.J.; McKenna, K.P. Screening Doping Strategies to Mitigate Electron Trapping at Anatase TiO2 Surfaces. J. Phys. Chem. C 2019, 123, 22358–22367. [Google Scholar] [CrossRef]
- Mazzolini, P.; Russo, V.; Casari, C.S.; Hitosugi, T.; Nakao, S.; Hasegawa, T.; Li Bassi, A. Vibrational-Electrical Properties Relationship in Donor-Doped TiO2 by Raman Spectroscopy. J. Phys. Chem. C 2016, 120, 18878–18886. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Cao, K.; Guo, Z.; Han, Y.; Hu, W.; Wu, Y.; She, Y.; He, Y. Ultrasensitive and reversible room-temperature resistive humidity sensor based on layered two-dimensional titanium carbide. Ceram. Int. 2021, 47, 6463–6469. [Google Scholar] [CrossRef]
- Sun, L.; Wang, B.; Wang, Y. A Novel Silicon Carbide Nanosheet for High-Performance Humidity Sensor. Adv. Mater. Interfaces 2018, 5, 1701300. [Google Scholar] [CrossRef]
- Li, F.; Li, P.; Zhang, H. Preparation and Research of a High-Performance ZnO/SnO2 Humidity Sensor. Sensors 2022, 22, 293. [Google Scholar] [CrossRef]
- Lv, X.; Yang, G.; Feng, C.; Lin, T. Highly sensitive humidity sensor based on the solid solution Zr0.2Ti0.8O2 nanofibers. J. Alloy. Compd. 2022, 891, 161958. [Google Scholar] [CrossRef]
- Gong, M.; Li, Y.; Guo, Y.; Lv, X.; Dou, X. 2D TiO2 nanosheets for ultrasensitive humidity sensing application benefited by abundant surface oxygen vacancy defects. Sens. Actuators B Chem. 2018, 262, 350–358. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Y.; Zhou, C.; Xiao, Y.; Meng, B.; Wang, Z.; Huang, D.; Xing, C.; Peng, Z. High-Performance Humidity Sensor Based on Urchin-Like Composite of Ti3C2 MXene-Derived TiO2 Nanowires. ACS Appl. Mater. Interfaces 2019, 11, 38116–38125. [Google Scholar] [CrossRef]
- Jyothilal, H.; Shukla, G.; Walia, S.; Kundu, S.; Angappane, S. Humidity sensing and breath analyzing applications of TiO2 slanted nanorod arrays. Sens. Actuators A Phys. 2020, 301, 111758. [Google Scholar] [CrossRef]
- Blank, T.A.; Eksperiandova, L.P.; Belikov, K.N. Recent trends of ceramic humidity sensors development: A review. Sens. Actuators B Chem. 2016, 228, 416–442. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, Q.; Wang, S.; Huang, Q.; Yuan, Z.; Zhang, Y.; Jiang, Y.; Tai, H. Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens. Actuators B Chem. 2020, 317, 128204. [Google Scholar] [CrossRef]
- Mamat, M.H.; Ismail, A.S.; Parimon, N.; Vasimalai, N.; Abdullah, M.H.; Malek, M.F.; Yaakob, M.K.; Ahmad, M.K.; Nafarizal, N.; Suriani, A.B.; et al. Heterojunction of SnO2 nanosheet/arrayed ZnO nanorods for humidity sensing. Mater. Chem. Phys. 2022, 288, 126436. [Google Scholar] [CrossRef]
- Ismail, A.S.; Mamat, M.H.; Shameem Banu, I.B.; Amiruddin, R.; Malek, M.F.; Parimon, N.; Zoolfakar, A.S.; Md. Sin, N.D.; Suriani, A.B.; Ahmad, M.K.; et al. Structural modification of ZnO nanorod array through Fe-doping: Ramification on UV and humidity sensing properties. Nano Struct. Nano Objects 2019, 18, 100262. [Google Scholar] [CrossRef]
- Addabbo, T.; Cappelli, I.; Fort, A.; Mugnaini, M.; Panzardi, E.; Vignoli, V.; Viti, C. The Effect of Au Nanoparticle Addition on Humidity Sensing with Ultra-Small TiO2 Nanoparticles. Chemosensors 2021, 9, 170. [Google Scholar] [CrossRef]
- Subki, A.S.R.A.; Mamat, M.H.; Mohamed Zahidi, M.; Abdullah, M.H.; Shameem Banu, I.B.; Vasimalai, N.; Ahmad, M.K.; Nayan, N.; Abu Bakar, S.; Mohamed, A.; et al. Optimization of Aluminum Dopant Amalgamation Immersion Time on Structural, Electrical, and Humidity-Sensing Attributes of Pristine ZnO for Flexible Humidity Sensor Application. Chemosensors 2022, 10, 489. [Google Scholar] [CrossRef]
- Ismail, A.S.; Mamat, M.H.; Shameem Banu, I.B.; Malek, M.F.; Yusoff, M.M.; Mohamed, R.; Ahmad, W.R.W.; Abdullah, M.A.R.; Md. Sin, N.D.; Suriani, A.B.; et al. Modulation of Sn concentration in ZnO nanorod array: Intensification on the conductivity and humidity sensing properties. J. Mater. Sci. Mater. Electron. 2018, 29, 12076–12088. [Google Scholar] [CrossRef]
- Subki, A.S.R.A.; Mamat, M.H.; Musa, M.Z.; Abdullah, M.H.; Shameem Banu, I.B.; Vasimalai, N.; Ahmad, M.K.; Nafarizal, N.; Suriani, A.B.; Mohamad, A.; et al. Effects of varying the amount of reduced graphene oxide loading on the humidity sensing performance of zinc oxide/reduced graphene oxide nanocomposites on cellulose filter paper. J. Alloy. Compd. 2022, 926, 166728. [Google Scholar] [CrossRef]
- Lei, C.; Zhang, J.; Liang, T.; Liu, R.; Zhao, Z.; Xiong, J.; Yin, K. Humidity Sensor Based on rGO-SDS Composite Film. Micromachines 2022, 13, 504. [Google Scholar] [CrossRef]
Sample | XRD Angle, 2θ (º) | Interplanar Distance, dhkl (Å) | Lattice Parameter, a (Å) | Crystallite Size, D (nm) | Microstrain, ε (×10−3) |
---|---|---|---|---|---|
UTD | 26.85 | 3.32 | 4.691 | 47.1 | 1.017 |
TAFM-1 | 26.86 | 3.31 | 4.688 | 40.8 | 1.166 |
TAFM-3 | 26.84 | 3.32 | 4.692 | 25.8 | 1.857 |
TAFM-5 | 26.93 | 3.31 | 4.676 | 23.3 | 1.980 |
TAFM-7 | 27.16 | 3.28 | 4.638 | 23.0 | 1.852 |
TAFM-9 | 26.82 | 3.32 | 4.695 | 19.0 | 2.543 |
Sample | Sheet Resistance (Ω/cm2) | Carrier Concentration (cm−3) | Carrier Mobility (cm2/V·s) |
---|---|---|---|
UTD | 2.52 × 102 | 5.00 × 1018 | 6.35 × 102 |
TAFM-3 | 3.27 × 101 | 9.98 × 1018 | 1.92 × 103 |
Material | Sensor Type | Humidity Range | Sensor Performance | Ref. |
---|---|---|---|---|
Graphene/ZnO | Resistive | 15–86 %RH | S = 7.77 µA/%RH | [24] |
Ti3C2/TiO2 | Capacitive | 7–97 %RH | S = 1614 pF/%RH | [57] |
Titanium Carbide | Resistive | 33–95 %RH | [52] | |
TiO2 | Resistive | 5–95 %RH | S = 4940% | [58] |
Ta-doped TiO2 | Resistive | 40–90 %RH | Our work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Zahidi, M.; Mamat, M.H.; Subki, A.S.R.A.; Abdullah, M.H.; Hassan, H.; Ahmad, M.K.; Bakar, S.A.; Mohamed, A.; Ohtani, B. Formation of a Nanorod-Assembled TiO2 Actinomorphic-Flower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing. Nanomaterials 2023, 13, 256. https://doi.org/10.3390/nano13020256
Mohamed Zahidi M, Mamat MH, Subki ASRA, Abdullah MH, Hassan H, Ahmad MK, Bakar SA, Mohamed A, Ohtani B. Formation of a Nanorod-Assembled TiO2 Actinomorphic-Flower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing. Nanomaterials. 2023; 13(2):256. https://doi.org/10.3390/nano13020256
Chicago/Turabian StyleMohamed Zahidi, Musa, Mohamad Hafiz Mamat, A Shamsul Rahimi A Subki, Mohd Hanapiah Abdullah, Hamizura Hassan, Mohd Khairul Ahmad, Suriani Abu Bakar, Azmi Mohamed, and Bunsho Ohtani. 2023. "Formation of a Nanorod-Assembled TiO2 Actinomorphic-Flower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing" Nanomaterials 13, no. 2: 256. https://doi.org/10.3390/nano13020256
APA StyleMohamed Zahidi, M., Mamat, M. H., Subki, A. S. R. A., Abdullah, M. H., Hassan, H., Ahmad, M. K., Bakar, S. A., Mohamed, A., & Ohtani, B. (2023). Formation of a Nanorod-Assembled TiO2 Actinomorphic-Flower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing. Nanomaterials, 13(2), 256. https://doi.org/10.3390/nano13020256