Photo-Controlled Self-Assembly of Nanoparticles: A Promising Strategy for Development of Novel Structures
Abstract
:1. Introduction
2. Photochemical Process-Controlled Self-Assembly of NPs Based on Photochromic Molecules
2.1. Introduction to Photochemical Process
2.2. Photo-Controlled Self-Assembly of Nanoparticles
2.2.1. Azobenzene-Functionalized Nanoparticles
2.2.2. Spiropyran-Functionalized Nanoparticles
2.2.3. Diarylethene-Functionalized Nanoparticles
3. Photophysical Process-Controlled Self-Assembly of NPs
3.1. Photophysical Process
3.2. Photo-Controlled Behavior Polyphenylthiobenzene Derivatives
3.2.1. Photo-Controlled Molecular Aggregation
3.2.2. Photo-Controlled NP Aggregation
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Linko, V.; Zhang, H.; Nonappa; Kostiainen, M.A.; Ikkala, O. From Precision Colloidal Hybrid Materials to Advanced Functional Assemblies. Acc. Chem. Res. 2022, 55, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [PubMed]
- Merindol, R.; Walther, A. 2 Materials learning from life: Concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 2017, 46, 5588–5619. [Google Scholar]
- Montis, R.; Fusaro, L.; Falqui, A.; Hursthouse, M.B.; Tumanov, N.; Coles, S.J.; Threlfall, T.L.; Horton, P.N.; Sougrat, R.; Lafontaine, A.; et al. Complex structures arising from the self-assembly of a simple organic salt. Nature 2021, 590, 275–278. [Google Scholar] [CrossRef]
- Boles, M.A.; Engel, M.; Talapin, D.V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem. Rev. 2016, 116, 11220–11289. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M.; Mathias, J.P.; Seto, C.T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319. [Google Scholar] [CrossRef]
- Ozin, G.A.; Hou, K.; Lotsch, B.V.; Cademartiri, L.; Puzzo, D.P.; Scotognella, F.; Ghadimi, A.; Thomson, J. Nanofabrication by self-assembly. Mater. Today 2009, 12, 12–23. [Google Scholar] [CrossRef]
- Lawes, P.; Boero, M.; Barhoumi, R.; Klyatskaya, S.; Ruben, M.; Bucher, J.P. Hierarchical Self-Assembly and Conformation of Tb Double-Decker Molecular Magnets: Experiment and Molecular Dynamics. Nanomaterials 2023, 13, 2232. [Google Scholar] [CrossRef]
- Chen, H.; Fraser Stoddart, J. From molecular to supramolecular electronics. Nat. Rev. Mater. 2021, 6, 804–828. [Google Scholar]
- Rao, A.; Roy, S.; Jain, V.; Pillai, P.P. Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS Appl. Mater. Interfaces 2023, 15, 25248–25274. [Google Scholar] [CrossRef]
- Lee, M.S.; Yee, D.W.; Ye, M.; Macfarlane, R.J. Nanoparticle Assembly as a Materials Development Tool. J. Am. Chem. Soc. 2022, 144, 3330–3346. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Semcheddine, F.; Guo, Z.; Jiang, H.; Wang, X. Near-Infrared Light-Triggered Nitric Oxide Nanogenerators for NO-Photothermal Synergistic Cancer Therapy. Nanomaterials 2022, 12, 1348. [Google Scholar] [CrossRef]
- Weißenfels, M.; Gemen, J.; Klajn, R. Dissipative Self-Assembly: Fueling with Chemicals versus Light. Chem 2021, 7, 23–37. [Google Scholar] [CrossRef]
- Ragazzon, G.; Baroncini, M.; Silvi, S.; Venturi, M.; Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 2015, 10, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Qi, Z.; Chen, M.; Qu, D.H. Out-of-equilibrium supramolecular self-assembling systems driven by chemical fuel. Aggregate 2021, 2, e110. [Google Scholar] [CrossRef]
- Yagai, S.; Karatsu, T.; Kitamura, A. Photocontrollable self-assembly. Chem. Eur. J. 2005, 11, 4054–4063. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Zhao, W.; Yang, X.J.; Wu, B. Anion-Coordination-Driven Assembly. Acc. Chem. Res. 2022, 55, 3218–3229. [Google Scholar] [CrossRef]
- Cook, T.R.; Zheng, Y.R.; Stang, P.J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; He, Y.; Yoon, Y.J.; Jung, J.; Zhang, G.; Lin, Z. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proc. Natl. Acad. Sci. USA 2018, 115, E1391–E1400. [Google Scholar] [CrossRef]
- Gentili, D.; Ori, G.; Ortolani, L.; Morandi, V.; Cavallini, M. Cooperative and Reversible Anisotropic Assembly of Gold Nanoparticles by Modulation of Noncovalent Interparticle Interactions. ChemNanoMat 2017, 3, 874–878. [Google Scholar] [CrossRef]
- Montelongo, Y.; Sikdar, D.; Ma, Y.; McIntosh, A.J.S.; Velleman, L.; Kucernak, A.R.; Edel, J.B.; Kornyshev, A.A. Electrotunable nanoplasmonic liquid mirror. Nat. Mater. 2017, 16, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.M.; Feng, W.J.; Bisoyi, H.K.; Zhang, S.; Chen, X.; Yang, H.; Li, Q. Light-activated photodeformable supramolecular dissipative self-assemblies. Nat. Commun. 2022, 13, 3216. [Google Scholar] [CrossRef] [PubMed]
- Lubbe, A.S.; Szymanski, W.; Feringa, B.L. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem. Soc. Rev. 2017, 46, 1052–1079. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.G.; Li, Y.; Bisoyi, H.K.; Wang, L.; Bunning, T.J.; Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 2016, 531, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Feringa, B.L. Photoresponsive Supramolecular Polymers: From Light-Controlled Small Molecules to Smart Materials. Adv. Mater. 2023, 35, e2204413. [Google Scholar] [CrossRef]
- Kundu, P.K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Borner, M.; Udayabhaskararao, T.; Manna, D.; Klajn, R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 2015, 7, 646–652. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, W.; Wang, R.Y.; Ji, Y.; Wu, X.; Zhang, X. Photocontrollable Chiral Switching and Selection in Self-Assembled Plasmonic Nanostructure. Adv. Fun. Mater. 2019, 29, 1900587. [Google Scholar] [CrossRef]
- Bistervels, M.H.; Kamp, M.; Schoenmaker, H.; Brouwer, A.M.; Noorduin, W.L. Light-Controlled Nucleation and Shaping of Self-Assembling Nanocomposites. Adv. Mater. 2022, 34, e2107843. [Google Scholar] [CrossRef]
- Bansal, A.; Zhang, Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc. Chem. Res. 2014, 47, 3052–3060. [Google Scholar] [CrossRef]
- Yi, J.; Qin, Y.; Zhang, Y. Synthesis and Self-Assembly of Hyperbranched Multiarm Copolymer Lysozyme Conjugates Based on Light-Induced Metal-Free Atrp. Nanomaterials 2023, 13, 1017. [Google Scholar] [CrossRef]
- Jia, X.; Zhu, L. 9 Photoexcitation-Induced Assembly: A Bottom-Up Physical Strategy for Driving Molecular Motion and Phase Evolution. Acc. Chem. Res. 2023, 56, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Bian, T.; Chu, Z.; Klajn, R. The Many Ways to Assemble Nanoparticles Using Light. Adv. Mater. 2020, 32, e1905866. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.B.; Zhang, S.; Bai, E.; Cao, X.; Wang, J.; Qi, J.; Liu, J.; Zhao, J.; Zhang, L.; Yoon, J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. Adv. Mater. 2022, 34, e2108289. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.B.; Zhang, S.; Qi, J.; Liang, X.J.; Yoon, J. Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly. Adv. Mater. 2021, 33, e2007290. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Q. Photochromism into nanosystems: Towards lighting up the future nanoworld. Chem. Soc. Rev. 2018, 47, 1044–1097. [Google Scholar] [CrossRef]
- Cheng, X.; Sun, R.; Yin, L.; Chai, Z.; Shi, H.; Gao, M. Light-Triggered Assembly of Gold Nanoparticles for Photothermal Therapy and Photoacoustic Imaging of Tumors In Vivo. Adv. Mater. 2017, 29, 1604894. [Google Scholar] [CrossRef]
- Gentili, D.; Ori, G. Reversible assembly of nanoparticles: Theory, strategies and computational simulations. Nanoscale 2022, 14, 14385–14432. [Google Scholar] [CrossRef]
- Wang, J.; Peled, T.S.; Klajn, R. Photocleavable Anionic Glues for Light-Responsive Nanoparticle Aggregates. J. Am. Chem. Soc. 2023, 145, 4098–4108. [Google Scholar] [CrossRef]
- Liu, M.; Yang, M.; Wan, X.; Tang, Z.; Jiang, L.; Wang, S. From Nanoscopic to Macroscopic Materials by Stimuli-Responsive Nanoparticle Aggregation. Adv. Mater. 2023, 35, e2208995. [Google Scholar] [CrossRef]
- Bandara, H.M.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef]
- Merino, E.; Ribagorda, M. Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J. Org. Chem. 2012, 8, 1071–1090. [Google Scholar] [CrossRef]
- Stoffelen, C.; Voskuhl, J.; Jonkheijm, P.; Huskens, J. Dual stimuli-responsive self-assembled supramolecular nanoparticles. Angew. Chem. Int. Ed. Engl. 2014, 53, 3400–3404. [Google Scholar] [CrossRef] [PubMed]
- Beharry, A.A.; Woolley, G.A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011, 40, 4422–4437. [Google Scholar] [CrossRef] [PubMed]
- Broichhagen, J.; Frank, J.A.; Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res. 2015, 48, 1947–1960. [Google Scholar] [CrossRef] [PubMed]
- Klajn, R.; Bishop, K.J.; Fialkowski, M.; Paszewski, M.; Campbell, C.J.; Gray, T.P.; Grzybowski, B.A. Plastic and moldable metals by self-assembly of sticky nanoparticle aggregates. Science 2007, 316, 261–264. [Google Scholar] [CrossRef]
- Klajn, R.; Bishop, K.J.; Grzybowski, B.A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl. Acad. Sci. USA 2007, 104, 10305–10309. [Google Scholar] [CrossRef]
- Manna, A.; Chen, P.-L.; Akiyama, H.; Wei, T.-X.; Tamada, K.; Knoll, W. Optimized Photoisomerization on Gold Nanoparticles Capped by Unsymmetrical Azobenzene Disulfides. Chem. Mater. 2002, 15, 20–28. [Google Scholar] [CrossRef]
- Klajn, R.; Wesson, P.J.; Bishop, K.J.; Grzybowski, B.A. Writing self-erasing images using metastable nanoparticle “inks”. Angew. Chem. Int. Ed. Engl. 2009, 48, 7035–7039. [Google Scholar] [CrossRef]
- Manna, D.; Udayabhaskararao, T.; Zhao, H.; Klajn, R. Orthogonal light-induced self-assembly of nanoparticles using differently substituted azobenzenes. Angew. Chem. Int. Ed. Engl. 2015, 54, 12394–12397. [Google Scholar] [CrossRef]
- Kohntopp, A.; Dabrowski, A.; Malicki, M.; Temps, F. Photoisomerisation and ligand-controlled reversible aggregation of azobenzene-functionalised gold nanoparticles. Chem. Commun. 2014, 50, 10105–10107. [Google Scholar] [CrossRef]
- Zhao, H.; Sen, S.; Udayabhaskararao, T.; Sawczyk, M.; Kucanda, K.; Manna, D.; Kundu, P.K.; Lee, J.W.; Kral, P.; Klajn, R. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotechnol. 2016, 11, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yan, H.; Ang, C.Y.; Nguyen, K.T.; Li, M.; Zhao, Y. Photoswitchable supramolecular catalysis by interparticle host-guest competitive binding. Chem. Eur. J. 2012, 18, 13979–13983. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; You, M.; Wu, C.; Han, D.; Ocsoy, I.; Chen, T.; Chen, Z.; Tan, W. Reversible phase transfer of nanoparticles based on photoswitchable host-guest chemistry. ACS Nano 2014, 8, 2555–2561. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Sun, L.B.; Chen, Y.P.; Perry, Z.; Zhou, H.C. Azobenzene-functionalized metal-organic polyhedra for the optically responsive capture and release of guest molecules. Angew. Chem. Int. Ed. Engl. 2014, 53, 5842–5846. [Google Scholar] [CrossRef] [PubMed]
- Suda, M.; Nakagawa, M.; Iyoda, T.; Einaga, Y. Reversible photoswitching of ferromagnetic FePt nanoparticles at room temperature. J. Am. Chem. Soc. 2007, 129, 5538–5543. [Google Scholar] [CrossRef]
- Mogaki, R.; Okuro, K.; Aida, T. Adhesive Photoswitch: Selective Photochemical Modulation of Enzymes under Physiological Conditions. J. Am. Chem. Soc. 2017, 139, 10072–10078. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Y.; Shaukat, A.; Meng, Z.; Kyllonen, D.; Seitz, I.; Langerreiter, D.; Kuntze, K.; Priimagi, A.; Zheng, L.; et al. Optically Controlled Construction of Three-Dimensional Protein Arrays. Angew. Chem. Int. Ed. Engl. 2023, 62, e202303880. [Google Scholar] [CrossRef]
- Liu, G.; Sheng, J.; Teo, W.L.; Yang, G.; Wu, H.; Li, Y.; Zhao, Y. Control on Dimensions and Supramolecular Chirality of Self-Assemblies through Light and Metal Ions. J. Am. Chem. Soc. 2018, 140, 16275–16283. [Google Scholar] [CrossRef]
- Yang, F.; Yue, B.; Zhu, L. Light-triggered Modulation of Supramolecular Chirality. Chem. Eur. J. 2023, 29, e202203794. [Google Scholar] [CrossRef]
- Samanta, D.; Galaktionova, D.; Gemen, J.; Shimon, L.J.W.; Diskin-Posner, Y.; Avram, L.; Kral, P.; Klajn, R. Reversible chromism of spiropyran in the cavity of a flexible coordination cage. Nat. Commun. 2018, 9, 641. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, L.; Rong, Y.; Liu, Z.; Tong, D.; Huang, Y.; Chen, T. Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS. Langmuir 2015, 31, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.F.; Chen, X.M.; Bisoyi, H.K.; Qi, Q.; Xu, T.; Chen, D.; Li, Q. Light-Driven Aqueous Dissipative Pseudorotaxanes with Tunable Fluorescence Enabling Deformable Nano-Assemblies. ACS Appl. Mater. Interfaces 2023, 15, 11004–11015. [Google Scholar] [CrossRef] [PubMed]
- Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148–184. [Google Scholar] [CrossRef]
- Kundu, P.K.; Das, S.; Ahrens, J.; Klajn, R. Controlling the lifetimes of dynamic nanoparticle aggregates by spiropyran functionalization. Nanoscale 2016, 8, 19280–19286. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, W.; Sun, K.; Deng, K.; Zhang, W.; Wang, Z.; Jiang, X. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem. Int. Ed. Engl. 2011, 50, 4103–4107. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Shirakawa, E.; Tanaka, K.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Spiropyran-modified gold nanoparticles: Reversible size control of aggregates by UV and visible light irradiations. ACS Appl. Mater. Interfaces 2014, 6, 7554–7562. [Google Scholar] [CrossRef]
- Samanta, D.; Klajn, R. Aqueous Light-Controlled Self-Assembly of Nanoparticles. Adv. Opt. Mater. 2016, 4, 1373–1377. [Google Scholar] [CrossRef]
- Tian, H.; Yang, S. Recent progresses on diarylethene based photochromic switches. Chem. Soc. Rev. 2004, 33, 85–97. [Google Scholar] [CrossRef]
- Li, M.; Zhu, W.H. Sterically Hindered Diarylethenes with a Benzobis(thiadiazole) Bridge: Enantiospecific Transformation and Reversible Photosuperstructures. Acc. Chem. Res. 2022, 55, 3136–3149. [Google Scholar] [CrossRef]
- Spangenberg, A.; Metivier, R.; Yasukuni, R.; Shibata, K.; Brosseau, A.; Grand, J.; Aubard, J.; Yu, P.; Asahi, T.; Nakatani, K. Photoswitchable interactions between photochromic organic diarylethene and surface plasmon resonance of gold nanoparticles in hybrid thin films. Phys. Chem. Chem. Phys. 2013, 15, 9670–9678. [Google Scholar] [CrossRef]
- van der Molen, S.J.; Liao, J.; Kudernac, T.; Agustsson, J.S.; Bernard, L.; Calame, M.; van Wees, B.J.; Feringa, B.L.; Schonenberger, C. Light-controlled conductance switching of ordered metal-molecule-metal devices. Nano Lett. 2009, 9, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.G.; Chen, Y.; Dai, X.Y.; Liu, Y. Quaternary Supramolecular Nanoparticles as a Photoerasable Luminescent Ink and Photocontrolled Cell-Imaging Agent. Adv. Opt. Mater. 2020, 8, 2000220. [Google Scholar] [CrossRef]
- Liu, G.; Xu, X.; Dai, X.; Jiang, C.; Zhou, Y.; Lu, L.; Liu, Y. Cucurbituril-activated photoreaction of dithienylethene for controllable targeted lysosomal imaging and anti-counterfeiting. Mater. Horiz. 2021, 8, 2494–2502. [Google Scholar] [CrossRef]
- Ferreira, P.; Ventura, B.; Barbieri, A.; Da Silva, J.P.; Laia, C.A.T.; Parola, A.J.; Basilio, N. A Visible-Near-Infrared Light-Responsive Host-Guest Pair with Nanomolar Affinity in Water. Chem. Eur. J. 2019, 25, 3477–3482. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Y.; Dai, X.; Li, P.; Stoddart, J.F.; Liu, Y. In Situ Photoconversion of Multicolor Luminescence and Pure White Light Emission Based on Carbon Dot-Supported Supramolecular Assembly. J. Am. Chem. Soc. 2019, 141, 6583–6591. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Zhang, H.Y.; Liu, G.; Dai, X.; Chen, L.; Liu, Y. Photocontrolled Light-Harvesting Supramolecular Assembly Based on Aggregation-Induced Excimer Emission. Adv. Opt. Mater. 2020, 9, 2001702. [Google Scholar] [CrossRef]
- Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun. 2018, 9, 840. [Google Scholar] [CrossRef]
- Gu, L.; Shi, H.; Gu, M.; Ling, K.; Ma, H.; Cai, S.; Song, L.; Ma, C.; Li, H.; Xing, G.; et al. Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angew. Chem. Int. Ed. Engl. 2018, 57, 8425–8431. [Google Scholar] [CrossRef]
- Xu, S.; Chen, R.; Zheng, C.; Huang, W. Excited State Modulation for Organic Afterglow: Materials and Applications. Adv. Mater. 2016, 28, 9920–9940. [Google Scholar] [CrossRef]
- Hu, H.; Cheng, X.; Ma, Z.; Sijbesma, R.P.; Ma, Z. Polymer Mechanochromism from Force-Tuned Excited-State Intramolecular Proton Transfer. J. Am. Chem. Soc. 2022, 144, 9971–9979. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, R.; Li, G.; Li, B.; Ma, Y.; Sun, M.; Wang, Z.; Tang, B.Z. Photo-induced crystallization with emission enhancement (PICEE). Mater. Horiz. 2020, 7, 3005–3010. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Z.; Yu, J.; Lu, X.; Lam, J.W.Y.; Sun, J.; He, Z.; Ma, H.; Tang, B.Z. Turning On Solid-State Luminescence by Phototriggered Subtle Molecular Conformation Variations. Adv. Mater. 2021, 33, e2006844. [Google Scholar] [CrossRef]
- Zhang, H.; Du, L.; Wang, L.; Liu, J.; Wan, Q.; Kwok, R.T.K.; Lam, J.W.Y.; Phillips, D.L.; Tang, B.Z. Visualization and Manipulation of Molecular Motion in the Solid State through Photoinduced Clusteroluminescence. J. Phys. Chem. Lett. 2019, 10, 7077–7085. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Yue, B.; Zhou, L.; Niu, X.; Wu, W.; Zhu, L. Fluorescence to multi-colored phosphorescence interconversion of a novel, asterisk-shaped luminogen via multiple external stimuli. Chem. Commun. 2020, 56, 4336–4339. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Han, S.; Zhu, L.; Jia, X. Multiple-stimuli-responsive multicolor luminescent self-healing hydrogel and application in information encryption and bioinspired camouflage. J. Mater. Chem. C 2022, 10, 15565–15572. [Google Scholar] [CrossRef]
- Xu, J.; Feng, H.; Teng, H.; Chen, G.; Pan, S.; Chen, J.; Qian, Z. Reversible Switching between Phosphorescence and Fluorescence in a Unimolecular System Controlled by External Stimuli. Chem. Eur. J. 2018, 24, 12773–12778. [Google Scholar] [CrossRef]
- Wu, H.; Chi, W.; Baryshnikov, G.; Wu, B.; Gong, Y.; Zheng, D.; Li, X.; Zhao, Y.; Liu, X.; Agren, H.; et al. Crystal Multi-Conformational Control Through Deformable Carbon-Sulfur Bond for Singlet-Triplet Emissive Tuning. Angew. Chem. Int. Ed. Engl. 2019, 58, 4328–4333. [Google Scholar] [CrossRef] [PubMed]
- Fermi, A.; Bergamini, G.; Roy, M.; Gingras, M.; Ceroni, P. Turn-on phosphorescence by metal coordination to a multivalent terpyridine ligand: A new paradigm for luminescent sensors. J. Am. Chem. Soc. 2014, 136, 6395–6400. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, Y.; Yin, L.; Hang, C.; Li, X.; Agren, H.; Yi, T.; Zhang, Q.; Zhu, L. Helical Self-Assembly-Induced Singlet-Triplet Emissive Switching in a Mechanically Sensitive System. J. Am. Chem. Soc. 2017, 139, 785–791. [Google Scholar] [CrossRef]
- Gu, J.; Yue, B.; Baryshnikov, G.V.; Li, Z.; Zhang, M.; Shen, S.; Agren, H.; Zhu, L. Visualizing Material Processing via Photoexcitation-Controlled Organic-Phase Aggregation-Induced Emission. Research 2021, 2021, 9862093. [Google Scholar] [CrossRef]
- Yue, B.; Jia, X.; Baryshnikov, G.V.; Jin, X.; Feng, X.; Lu, Y.; Luo, M.; Zhang, M.; Shen, S.; Agren, H.; et al. Photoexcitation-Based Supramolecular Access to Full-Scale Phase-Diagram Structures through in situ Phase-Volume Ratio Phototuning. Angew. Chem. Int. Ed. Engl. 2022, 61, e202209777. [Google Scholar] [CrossRef] [PubMed]
- Yue, B.; Feng, X.; Wang, C.; Zhang, M.; Lin, H.; Jia, X.; Zhu, L. In Situ Regulation of Microphase Separation-Recognized Circularly Polarized Luminescence via Photoexcitation-Induced Molecular Aggregation. ACS Nano 2022, 16, 16201–16210. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Shao, C.; Bai, X.; Zhou, Q.; Wu, B.; Wang, L.; Yue, B.; Zhu, H.; Zhu, L. Photoexcitation-controlled self-recoverable molecular aggregation for flicker phosphorescence. Proc. Natl. Acad. Sci. USA 2019, 116, 4816–4821. [Google Scholar] [CrossRef]
- Weng, T.; Zou, Q.; Zhang, M.; Wu, B.; Baryshnikov, G.V.; Shen, S.; Chen, X.; Agren, H.; Jia, X.; Zhu, L. Enhancing the Operability of Photoexcitation-Controlled Aggregation-Induced Emissive Molecules in the Organic Phase. J. Phys. Chem. Lett. 2021, 12, 6182–6189. [Google Scholar] [CrossRef]
- Shen, S.; Baryshnikov, G.; Yue, B.; Wu, B.; Li, X.; Zhang, M.; Ågren, H.; Zhu, L. Manipulating crystals through photoexcitation-induced molecular realignment. J. Mater. Chem. C 2021, 9, 11707–11714. [Google Scholar] [CrossRef]
- Shen, S.; Baryshnikov, G.V.; Xie, Q.; Wu, B.; Lv, M.; Sun, H.; Li, Z.; Agren, H.; Chen, J.; Zhu, L. Making multi-twisted luminophores produce persistent room-temperature phosphorescence. Chem. Sci. 2023, 14, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, M.; Li, Z.; Ye, D.; Gou, L.; Zou, Q.; Zhu, L. Highly efficient light-induced self-assembly of gold nanoparticles promoted by photoexcitation-induced aggregatable ligands. Chem. Commun. 2023, 59, 418–421. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Jia, X. Photo-Controlled Self-Assembly of Nanoparticles: A Promising Strategy for Development of Novel Structures. Nanomaterials 2023, 13, 2562. https://doi.org/10.3390/nano13182562
Li J, Jia X. Photo-Controlled Self-Assembly of Nanoparticles: A Promising Strategy for Development of Novel Structures. Nanomaterials. 2023; 13(18):2562. https://doi.org/10.3390/nano13182562
Chicago/Turabian StyleLi, Juntan, and Xiaoyong Jia. 2023. "Photo-Controlled Self-Assembly of Nanoparticles: A Promising Strategy for Development of Novel Structures" Nanomaterials 13, no. 18: 2562. https://doi.org/10.3390/nano13182562