Surface Defects Improved SERS Activity of Nanoporous Gold Prepared by Electrochemical Dealloying
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erlebacher, J.; Seshadri, R. Hard materials with tunable porosity. MRS Bull. 2009, 34, 561–566. [Google Scholar] [CrossRef]
- Ding, Y.; Kim, J.Y.; Erlebacher, J. Nanoporous gold leaf: “ancient technology”/advanced material. Adv. Mater. 2004, 16, 1897–1900. [Google Scholar] [CrossRef]
- Erlebacher, J.; Aziz, J.M.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Bekana, D.; Liu, R.; Li, S.; Liu, J.-F. Fabrication of nanoporous silver film by dealloying Ag/α-Fe2O3 nanocomposite for surface-enhanced Raman spectroscopy. Sens. Actuators B Chem. 2019, 286, 94–100. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Zhao, L.Y.; Liu, H.; Ding, Q.Q.; Jia, C.H.; Liao, S.H.; Cheng, N.T.; Yue, M.; Yang, S.K. Nanoporous silver nanorods as surface-enhanced Raman scattering substrates. Biosens. Bioelectron. 2022, 202, 114004. [Google Scholar] [CrossRef]
- Chen, Q.; Ding, Y.; Chen, M.W. Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bull. 2018, 43, 43–48. [Google Scholar] [CrossRef]
- Seker, E.; Shih, W.C.; Stine, K.J. Nanoporous metals by alloy corrosion: Bioanalytical and biomedical applications. MRS Bull. 2018, 43, 49–56. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, M.W. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009, 34, 569–576. [Google Scholar] [CrossRef]
- Wang, L.; Wan, X.M.; Gao, R.; Lu, D.F.; Qi, Z.M. Preparation and characterization of nanoporous gold film based surface plasmon resonance sensor. Acta. Opt. Sin. 2018, 38, 0228002. [Google Scholar] [CrossRef]
- Zhang, C.L.; Liu, Z.W.; Cai, C.; Yang, Z.H.; Qi, Z.M. Surface plasmon resonance gas sensor with a nanoporous gold film. Opt. Lett. 2022, 47, 4155–4158. [Google Scholar] [CrossRef]
- Yu, F.; Ahl, S.; Caminade, A.M.; Majoral, J.P.; Knoll, W.; Erlebacher, J. Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal. Chem. 2006, 78, 7346–7350. [Google Scholar] [CrossRef] [PubMed]
- Hotta, K.; Yamaguchi, A.; Teramae, N. Nanoporous Waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing. ACS Nano 2012, 6, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Scaglione, F.; Rizzi, P.; Battezzati, L. High performance SERS on nanoporous gold substrates synthesized by chemical de-alloying a Au-based metallic glass. Appl. Surf. Sci. 2017, 426, 1113–1120. [Google Scholar] [CrossRef]
- Hu, L.W.; Liu, X.; Le, G.M.; Li, J.F.; Qu, F.S.; Lu, S.Y.; Qi, L. Morphology evolution and SERS activity of the nanoporous Au prepared by dealloying sputtered Au-Ag film. Phys. B Condens. Matter 2019, 558, 49–53. [Google Scholar] [CrossRef]
- Xue, Y.; Scaglione, F.; Celegato, F.; Denis, P.; Paola Rizzi, H.; Battezzati, L. Shape controlled gold nanostructures on de-alloyed nanoporous gold with excellent SERS performance. Chem. Phys. Lett. 2018, 709, 46–51. [Google Scholar] [CrossRef]
- Xue, Y.P.; Scaglione, F.; Paschalidou, E.M.; Rizzi, P.; Battezzati, L. Excellent surface enhanced Raman scattering obtained with nanoporous gold fabricated by chemical de-alloying. Chem. Phys. Lett. 2016, 665, 6–9. [Google Scholar] [CrossRef]
- Qian, L.; Inoue, A.; Chen, M.W. Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold. Appl. Phys. Lett. 2008, 92, 093113. [Google Scholar] [CrossRef]
- Lang, X.Y.; Guan, P.F.; Zhang, L.; Fujita, T.; Chen, M.W. Size Dependence of molecular fluorescence enhancement of nanoporous gold. Appl. Phys. Lett. 2010, 96, 073701. [Google Scholar] [CrossRef]
- Chen, L.Y.; Zhang, L.; Fujita, T.; Chen, M.W. Surface enhanced Raman scattering of silver@ Nanoporous copper core-shell composites synthesized by in-situ sacrificial template approach. J. Phys. Chem. C 2009, 113, 14195. [Google Scholar] [CrossRef]
- Zhang, L.; Lang, X.Y.; Hirata, A.; Chen, M.W. Wrinkled nanoporous gold films with ultrahigh SERS enhancement. ACS Nano 2011, 5, 4407–4413. [Google Scholar] [CrossRef]
- Weissmuller, J.; Sieradzki, K. Dealloyed nanoporous materials with interface-controlled behavior. MRS Bull. 2018, 43, 14–19. [Google Scholar] [CrossRef]
- Fang, Y.; Seong, N.H.; Dlott, D.D. Measurement of the distribution of dite enhancement in surface-enhanced Raman scattering. Science 2008, 321, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, Z.H. On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution. Phys. Chem.Chem.Phys. 2010, 12, 1453–1472. [Google Scholar] [CrossRef]
- Fujita, T.; Chen, M.W. Characteristic Length Scale of Bicontinuous Nanoporous Structure by Fast Fourier Transform. Appl. Phys. Lett. 2008, 92, 251902. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, L.; Yang, M.; Tao, C.; Han, Z.; Chen, B.; Zeng, H. Size and distance dependent fluorescence enhancement of nanoporous gold. Opt. Exp. 2017, 25, 9901–9910. [Google Scholar] [CrossRef]
- Fujita, T.; Guan, P.F.; McKenna, K.; Lang, X.Y.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N.; et al. Atomic origins of the high catalytic activity of nanoporous gold. Nature Mater. 2012, 11, 775–780. [Google Scholar] [CrossRef]
- Oppenheim, I.C.; Trevor, D.J.; Chidsey, C.E.; Trevor, P.L.; Sieradzki, K. In situ scanning tunneling microscopy of corrosion of silver–gold alloys. Science 1991, 254, 687–689. [Google Scholar] [CrossRef]
- Geng, K.; Sieradzki, K. Dealloying at High Homologous Temperature: Morphology Diagrams. J. Electrochem. Soc. 2017, 164, C330. [Google Scholar] [CrossRef]
- Qian, L.H.; Yan, X.Q.; Fujita, T.; Inoue, A.; Chen, M.W. Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements. Appl. Phys. Lett. 2007, 90, 153120. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.Y.; Hirata, A.; Fujita, T.; Chen, M.W. Effect of residual silver on surface-enhanced Raman scattering of dealloyed nanoporous gold. J. Phys. Chem. C 2011, 115, 19583–19587. [Google Scholar] [CrossRef]
- Brummer, S.B.; Makrides, A.C. Surface oxidation of gold electrodes. J. Ele. Chem. Soc. 1964, 111, 1122–1128. [Google Scholar] [CrossRef]
- Huang, J.-F.; Chen, H.-H. Gold-nanoparticle-embedded nafion compositemodified on glassy carbon electrode for highly selective detection of arsenic(III). Talanta 2013, 116, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.Q.; Feng, S.S.; Chen, J.R.; Feng, J.J.; Hou, Y.B.; Ruan, Y.M.; Weng, X.X.; Milcovich, G. Gold nanoparticles/electrochemically expanded graphite composite: Abifunctional platform toward glucose sensing and SERS applications. J. Electroanal. Chem. 2019, 851, 113471. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhuu, Z.J.; Luo, J.Y.; Dan, Z.H.; Qin, F.X.; Chang, H. (1 1 1)-facet dominant ultrafine nanoporous silver as SERS substrates with high sensitivities and ultrahigh detection limits. Appl. Surf. Sci. 2021, 556, 149820. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Jing, Z.; Li, Z.; Fujita, T. Surface Defects Improved SERS Activity of Nanoporous Gold Prepared by Electrochemical Dealloying. Nanomaterials 2023, 13, 187. https://doi.org/10.3390/nano13010187
Zhang L, Jing Z, Li Z, Fujita T. Surface Defects Improved SERS Activity of Nanoporous Gold Prepared by Electrochemical Dealloying. Nanomaterials. 2023; 13(1):187. https://doi.org/10.3390/nano13010187
Chicago/Turabian StyleZhang, Ling, Zhiyu Jing, Zhexiao Li, and Takeshi Fujita. 2023. "Surface Defects Improved SERS Activity of Nanoporous Gold Prepared by Electrochemical Dealloying" Nanomaterials 13, no. 1: 187. https://doi.org/10.3390/nano13010187
APA StyleZhang, L., Jing, Z., Li, Z., & Fujita, T. (2023). Surface Defects Improved SERS Activity of Nanoporous Gold Prepared by Electrochemical Dealloying. Nanomaterials, 13(1), 187. https://doi.org/10.3390/nano13010187