Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = nanoporous gold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 41496 KB  
Article
Surface Nanoengineering of Gold via Oxalic Acid Anodization: Morphology, Composition, Electronic Properties, and Corrosion Resistance in Artificial Saliva
by Bożena Łosiewicz, Delfina Nowińska, Julian Kubisztal and Patrycja Osak
Materials 2026, 19(2), 335; https://doi.org/10.3390/ma19020335 - 14 Jan 2026
Viewed by 23
Abstract
Nanoporous gold (np-Au) has attracted significant attention for biomedical and electrochemical applications due to its high surface area, tunable morphology, and excellent biocompatibility. In this study, polycrystalline gold surfaces were modified by anodization in 0.3–0.9 M oxalic acid to produce np-Au layers. The [...] Read more.
Nanoporous gold (np-Au) has attracted significant attention for biomedical and electrochemical applications due to its high surface area, tunable morphology, and excellent biocompatibility. In this study, polycrystalline gold surfaces were modified by anodization in 0.3–0.9 M oxalic acid to produce np-Au layers. The influence of anodization conditions on surface morphology, chemical composition, electronic properties, and corrosion resistance in artificial saliva was systematically investigated. Surface morphology and porosity were analyzed by scanning electron microscopy combined with image analysis, revealing a transition from fine and uniform porosity to highly developed but structurally heterogeneous nanoporous structures with increasing oxalic acid concentration. Energy-dispersive spectroscopy confirmed surface oxidation and adsorption of oxygen- and carbon-containing species after anodization, while gold remained the dominant component. Scanning Kelvin probe measurements demonstrated significant modifications of surface electronic properties, including changes in contact potential difference, governed by nanostructure geometry and surface chemistry. Electrochemical tests in artificial saliva showed that increasing nanoporousness led to reduced thermodynamic stability, with the sample anodized in 0.3 M oxalic acid providing the most favorable balance between corrosion resistance and surface activity. These results demonstrate that oxalic acid anodization is a simple and effective approach for tailoring gold surfaces for biomedical applications, particularly in dentistry. Full article
(This article belongs to the Special Issue Biomedical Alloys: Corrosion Protection and New Coatings)
Show Figures

Graphical abstract

15 pages, 10416 KB  
Review
Nanostructured Oxides Obtained by Anodizing Aluminum Intermetallic Alloys
by Paulina Chilimoniuk-Szwarc, Piotr Dobroń and Wojciech Jerzy Stępniowski
Materials 2025, 18(22), 5192; https://doi.org/10.3390/ma18225192 - 15 Nov 2025
Viewed by 657
Abstract
Aluminum anodizing has been a well-established method of corrosion protection for over a century. A nanoporous and hexagonally arranged anodic aluminum oxide has become one of the most important template materials in nanotechnology. A totally new branch of research in anodizing was sparked [...] Read more.
Aluminum anodizing has been a well-established method of corrosion protection for over a century. A nanoporous and hexagonally arranged anodic aluminum oxide has become one of the most important template materials in nanotechnology. A totally new branch of research in anodizing was sparked by purple gold anodizing. This pioneering research showed that metal aluminides can be anodized and result in new classes of nanomaterials. Simultaneously, materials from Ti-Al systems were anodized, and the transition from nanopores to the nanotubes was mechanistically understood. Also, materials like Ni3Al were anodized; however, the most frequently used aluminides are materials from the Fe-Al binary phase diagram, from Fe3Al to FeAl3. The research on metal aluminides has shown that it is possible to obtain mixed oxides with a highly developed nanostructured morphology. A significant amount of fundamental research has shown it is possible to obtain such mixed oxides with tunable band gaps, depending on the substrate material, anodizing conditions, and heat treatment. Despite significant progress in fundamental research, there is a noticeable lack of applied research on this class of materials. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

22 pages, 4729 KB  
Article
Unidirectional Ligament Orientation Enables Enhanced Out-of-Plane Mechanical Properties in Anisotropic Nanoporous Gold
by Yuhang Zhang, Xiuming Liu, Yiqun Hu, Suhang Ding and Feixiang Tang
Nanomaterials 2025, 15(21), 1675; https://doi.org/10.3390/nano15211675 - 4 Nov 2025
Viewed by 601
Abstract
Nanoporous gold (NPG), characterized by a bicontinuous network of nanoscale solid ligaments and pore channels, exhibits exceptional physical and chemical properties. However, the limited strength and stiffness of traditional isotropic NPG (INPG) have constrained its engineering applications. To effectively enhance the mechanical properties [...] Read more.
Nanoporous gold (NPG), characterized by a bicontinuous network of nanoscale solid ligaments and pore channels, exhibits exceptional physical and chemical properties. However, the limited strength and stiffness of traditional isotropic NPG (INPG) have constrained its engineering applications. To effectively enhance the mechanical properties of NPG, this work proposes an innovative anisotropic NPG (ANPG) architecture featuring unidirectional ligament orientation. By controlling spinodal decomposition parameters, ANPG models with preferentially aligned ligaments and INPG with random ligament orientation are constructed, spanning relative densities from 0.30 to 0.50. The ligament length and diameter of ANPG along the out-of-plane direction are twice those along other directions. Molecular dynamics simulations of tensile tests show that ANPG exhibits superior out-of-plane Young’s modulus and yield strength but reduced fracture strain compared to INPG. Crucially, ANPG maintains toughness comparable to INPG at relative densities below 0.4, offering an optimal strength-toughness balance for practical applications. Scaling law analysis demonstrates INPG follows classical bending-dominated Gibson-Ashby behavior, while ANPG exhibits a hybrid deformation mechanism with significant ligament stretching contribution. Atomic-scale analysis reveals that both structures develop dislocation-mediated plasticity initially, but ANPG transitions to localized ligament necking and fractures more rapidly, explaining its reduced ductility. Strain localization quantification, measured by atomic shear strain standard deviation, confirms the intensifier deformation concentration in ANPG at large plastic strain. These findings suggest anisotropic design as a powerful strategy for developing high-performance NPG for actuators, sensors, and catalytic systems where simultaneous mechanical robustness and functional performance are required. Full article
(This article belongs to the Special Issue Advances in Nanoindentation and Nanomechanics)
Show Figures

Figure 1

14 pages, 5797 KB  
Article
Investigation of Blade Printing Technique for Nano-Structuring Piezoelectric Polymer Ink in a Porous Anodic Aluminum Oxide
by Tsvetozar Tsanev and Mariya Aleksandrova
Polymers 2025, 17(21), 2839; https://doi.org/10.3390/polym17212839 - 24 Oct 2025
Viewed by 555
Abstract
In this work, we investigated the use of a piezoelectric flexible device for energy harvesting. The main goal of the study was to fill the nanostructured pores of anodic aluminum oxide (AAO) films with piezoelectric polymer (PVDF-TrFE) via a modified conventional screen printing [...] Read more.
In this work, we investigated the use of a piezoelectric flexible device for energy harvesting. The main goal of the study was to fill the nanostructured pores of anodic aluminum oxide (AAO) films with piezoelectric polymer (PVDF-TrFE) via a modified conventional screen printing technique using blade printing. In this way, it is possible to obtain a composite from nanostructured thin films of polymer nanorods that shows improved charge generation ability compared to other non-nanostructured composites or pure (non-composite) aluminum with similar dimensions. This behavior is due to the effect of the highly developed surface of the material used to fill in the AAO nanopore template and its ability to withstand the application of higher mechanical loads to the structured piezoelectric material during deformation. The contact blade print filling technique can produce nanostructured piezoelectric polymer films with precise geometric parameters in terms of thickness and nanorod diameters, at around 200 nm, and a length of 12 μm. At a low frequency of 17 Hz, the highest root-mean-square (RMS) voltage generated using the nanostructured AAO/PVDF-TrFE sample with aluminum electrodes was around 395 mV. At high frequencies above 1700 Hz, the highest RMS voltage generated using the nanostructured AAO/PVDF-TrFE sample with gold electrodes was around 680 mV. The RMS voltage generated using a uniform (non-nanostructured) layer of PVDF-TrFE was 15% lower across the whole frequency range. Full article
(This article belongs to the Special Issue Advanced Polymers for Harnessing Power and Energy)
Show Figures

Graphical abstract

17 pages, 1911 KB  
Article
Assessment of Microbiome-Based Pathogen Detection Using Illumina Short-Read and Nanopore Long-Read Sequencing in 144 Patients Undergoing Bronchoalveolar Lavage in a University Hospital in Germany
by Merle Bitter, Markus Weigel, Jan Philipp Mengel, Benjamin Ott, Anita C. Windhorst, Khodr Tello, Can Imirzalioglu and Torsten Hain
Int. J. Mol. Sci. 2025, 26(20), 9841; https://doi.org/10.3390/ijms26209841 - 10 Oct 2025
Viewed by 1125
Abstract
Lower respiratory tract infections (LRTIs) represent a significant global health concern, and the accurate identification of pathogens is crucial for patient care. Culture-based methods are the gold standard, but their detection abilities are limited. Next-generation sequencing (NGS) offers a promising method for comprehensive [...] Read more.
Lower respiratory tract infections (LRTIs) represent a significant global health concern, and the accurate identification of pathogens is crucial for patient care. Culture-based methods are the gold standard, but their detection abilities are limited. Next-generation sequencing (NGS) offers a promising method for comprehensive microbial detection, providing valuable information for clinical practice. In this study, 144 bronchoalveolar lavage fluid samples were collected, culture-based diagnostics were performed, and bacterial microbiome profiles were generated by short-read sequencing of the V4 region of the 16S rRNA gene using Illumina technologies and long-read sequencing with Oxford Nanopore Technologies (ONT) to determine the full-length 16S rRNA gene. The most common genera detected by NGS included Streptococcus, Staphylococcus, Veillonella, Prevotella, Rothia, Enterococcus, and Haemophilus. Short-read sequencing detected cultured bacteria at the genus level in ~85% of cases, while long-read sequencing demonstrated agreement with cultured species in ~62% of cases. In three cases, long-read sequencing identified the uncommon potential lung pathogen Tropheryma whipplei not detected with traditional culturing techniques. The NGS results showed a partial overlap with culture as the current diagnostic gold standard in LRTI. Additionally, NGS detected a broader spectrum of bacteria, revealed fastidious potential pathogens, and offered deeper insights into the complex microbial ecosystem of the lungs. Full article
(This article belongs to the Collection Feature Papers in Molecular Microbiology)
Show Figures

Figure 1

30 pages, 7965 KB  
Article
Nanoporous Gold Nanoparticles-Modified Electrode for the Detection of Endotoxins
by Dhanbir Lingden, Preston Willis, Jay K. Bhattarai and Keith J. Stine
Micromachines 2025, 16(9), 1014; https://doi.org/10.3390/mi16091014 - 31 Aug 2025
Viewed by 1380
Abstract
Nanoporous gold nanoparticles (np-AuNPs) combine inertness, a nanoscale structure, and a porous framework with high surface area, conductivity, and biocompatibility, making them ideal for biosensing, catalysis, fuel cells, and drug delivery. Their open pore structure and low-coordinated atoms enhance biomolecule capture and mass [...] Read more.
Nanoporous gold nanoparticles (np-AuNPs) combine inertness, a nanoscale structure, and a porous framework with high surface area, conductivity, and biocompatibility, making them ideal for biosensing, catalysis, fuel cells, and drug delivery. Their open pore structure and low-coordinated atoms enhance biomolecule capture and mass transfer, while their tunable size, pore volume, and ease of surface modification make them promising biosensor transducers. However, synthesizing colloidal np-AuNPs in a simple way with controllable size and scalability remains challenging. The existing approaches mostly rely on specialized equipment, complex setups, and expert knowledge, while still facing challenges in terms of scalability. In this study, we present a simple, seedless, wet-chemical synthesis of colloidal np-AuNPs via the co-reduction of Au/Ag alloys followed by dealloying. By adjusting the Au:Ag ratio, we produced np-AuNPs sized ~120–530 nm, which were immobilized on electrodes for detecting lipopolysaccharide (LPS), a toxic component of Gram-negative bacterial membranes. The LPS biosensor exhibited excellent sensitivity towards detecting wild-type LPS, with a low limit of detection (LOD) of 0.1244 ng/L. This work demonstrates the effective synthesis and application of np-AuNPs in LPS biosensing. Full article
Show Figures

Figure 1

16 pages, 4395 KB  
Article
Nanoporous Copper Films via Dynamic Hydrogen Bubbling: A Promising SERS Substrate for Sensitive Detection of Methylene Blue
by Noor Tayyaba, Stefano Zago, Andrea Giura, Gianluca Fiore, Luigi Ribotta, Federico Scaglione and Paola Rizzi
Nanomaterials 2025, 15(12), 945; https://doi.org/10.3390/nano15120945 - 18 Jun 2025
Cited by 1 | Viewed by 1349
Abstract
Cu-based nanomaterials have received considerable attention as promising and cost-effective substrates for surface-enhanced Raman spectroscopy (SERS) applications despite their relatively low enhancement factor (EF) compared to noble metals like gold and silver. In this study, a fast and affordable synthesis route is proposed [...] Read more.
Cu-based nanomaterials have received considerable attention as promising and cost-effective substrates for surface-enhanced Raman spectroscopy (SERS) applications despite their relatively low enhancement factor (EF) compared to noble metals like gold and silver. In this study, a fast and affordable synthesis route is proposed to obtain a three-dimensional porous copper film (NPC) via an electrodeposition technique based on the dynamic hydrogen bubbling template (DHBT). Two sets of NPC film were synthesized, one without additives and the other with cetyltrimethylammonium bromide (CTAB). The impacts of deposition time on the NPCs’ porous morphology, thickness, and SERS performance were systematically investigated. With the optimal deposition time, the nanopore sizes could be tailored from 26.8 to 73 μm without additives and from 12.8 to 24 µm in the presence of CTAB. The optimal additive-free NPC film demonstrated excellent SERS performance at 180 s of deposition, while the CTAB-modified film showed strong enhancement at 120 s towards methylene blue (MB), a highly toxic dye, achieving a detection limit of 10−6 M. Additionally, the samples with CTAB showed better efficiency than those without CTAB. The calculated EF of NPC was found to be 5.9 × 103 without CTAB and 2.5 × 103 with the CTAB, indicating the potential of NPC as a cost-effective candidate for high-performance SERS substrates. This comprehensive study provides insights into optimizing the structural morphology of the NPCs to maximize their SERS enhancement factor and improve their detection sensitivity toward MB, thus overcoming the limitations associated with conventional copper-based SERS substrates. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

19 pages, 768 KB  
Article
From Sanger to Oxford Nanopore MinION Technology: The Impact of Third-Generation Sequencing on Genetic Hematological Diagnosis
by María José Larráyoz, Pablo Luri-Martin, Amagoia Mañu, Oihane Churruca, Natalia Gordillo, Irache Erdozain, Ada Esteban-Figuerola, Carlos de Miguel, Diego Robles, María García-Fortes, José Rifón Roca, Ana Alfonso-Pierola, Felipe Prósper, Beñat Ariceta and María José Calasanz
Cancers 2025, 17(11), 1811; https://doi.org/10.3390/cancers17111811 - 29 May 2025
Viewed by 2514
Abstract
Background: Sanger sequencing remains the gold standard for characterizing genetic variants in short DNA fragments (<700 bp). However, the increasing demand for short TATs and high sensitivities in variant detection, particularly in oncohematology, is driving the need for more efficient methods. Next-generation sequencing [...] Read more.
Background: Sanger sequencing remains the gold standard for characterizing genetic variants in short DNA fragments (<700 bp). However, the increasing demand for short TATs and high sensitivities in variant detection, particularly in oncohematology, is driving the need for more efficient methods. Next-generation sequencing (NGS) has improved sensitivity and allows for the simultaneous analysis of multiple genes, but it is still costly and time-consuming. Consequently, Sanger sequencing continues to be widely used. In this study, we have compared Sanger sequencing with Oxford Nanopore technology (ONT), which offers enhanced sensitivity and faster sequencing, delivering diagnostic results within 24 h. Methods: This study involves 164 samples (for a total of 174 analyzed regions of interest) previously characterized using either Sanger sequencing or a next-generation sequencing (NGS) panel, categorized by their genetic alterations. Validation was conducted on 15 genes crucial for the diagnosis, prognosis, or identification of drug resistance in myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). The primary objective was to assess whether MinION could identify the same variants previously detected in these patients. Results and Conclusions: With a 99.43% concordance observed in our comparison, our results support the implementation of MinION technology in routine variant detection in MPN, MDS, AML, and CML cases due to its significant advantages over Sanger sequencing. Full article
(This article belongs to the Special Issue Long-Read Sequencing in Cancer)
Show Figures

Figure 1

11 pages, 1777 KB  
Article
Evaluation of the Ellman’s Reagent Protocol for Free Sulfhydryls Under Protein Denaturing Conditions
by Sophia R. Ginet, Frank Gonzalez, Maxine L. Marano, Megha D. Salecha, Joseph E. Reiner and Gregory A. Caputo
Analytica 2025, 6(2), 18; https://doi.org/10.3390/analytica6020018 - 13 May 2025
Cited by 3 | Viewed by 5169
Abstract
Early detection of cancer can dramatically improve long-term prognosis and survivability in a variety of different cancer types. However, for many cancer types, the ability to effectively detect early-developing tumors is challenging, especially in physiological locations with limited visibility or access. Previously, we [...] Read more.
Early detection of cancer can dramatically improve long-term prognosis and survivability in a variety of different cancer types. However, for many cancer types, the ability to effectively detect early-developing tumors is challenging, especially in physiological locations with limited visibility or access. Previously, we reported a sensing platform and methodology to detect biomarker peptides found in urine from ovarian cancer patients. This sensing platform relies on peptide interactions with gold nanoclusters through thiol-mediated linkages; thus, the sensitivity of the biomarker assay is directly related to appropriate redox states of the biomarkers in question. Here, we report on an expansion of the traditional thiol-reactivity assay originally developed by Ellman to include and evaluate a variety of solution modifications that may be used in conjunction with the biomarker-sensing platform. Because biomarker peptides may be isolated from a variety of biological tissues or fluids, depending on the target condition or disease, we screened numerous solution conditions that may be directly used in sample preparation and peptide extraction. The data demonstrate that the assay maintains linearity under these various conditions. The assay was then applied to a variety of models and biomarker peptides and exhibits the expected linear response. These results demonstrate the applicability of the thiol-reactivity assay to biologically derived samples, and the flexibility to ensure sample preparation and treatment will retain the appropriate sample redox conditions to ensure optimal interactions with the biosensor platform. It also facilitates the ability to perform quality control on clinically derived biological samples to ensure appropriate preparations, and concentrations are available for application to the nanopore biosensor platform. Full article
Show Figures

Figure 1

14 pages, 3861 KB  
Article
The Reliable Detection of Homocysteine Using a Biosensor Based on Recombinant Cystathionine β-Synthase and Nanoporous Gold
by Zihan Huang, Yan Gao, Lei Zhang, Ting Cai, Ruijun Liu and Xia Wang
Microorganisms 2025, 13(3), 559; https://doi.org/10.3390/microorganisms13030559 - 1 Mar 2025
Viewed by 1548
Abstract
Given the essential roles of homocysteine (Hcy) and the interference of cysteine in effectively monitoring human health, this study proposed a synergistic effect strategy that combines the unique structural and functional properties of nanoporous gold (NPG) with the selective recognition capability of a [...] Read more.
Given the essential roles of homocysteine (Hcy) and the interference of cysteine in effectively monitoring human health, this study proposed a synergistic effect strategy that combines the unique structural and functional properties of nanoporous gold (NPG) with the selective recognition capability of a recombinant cystathionine β-synthase (CBS) for the sensitive and specific detection of Hcy. The CBS protein with specific catalytic activity for Hcy was successfully produced in recombinant Escherichia coli BL21 (pET-30a-cbs) using the cbs gene from Pseudomonas aeruginosa PAO1. The electrochemical mechanism demonstrated that the electrooxidation of H2S, a catalytic product of the CBS, was an irreversibly surface-controlled process on the CBS/NPG/GCE electrode surface. The electrochemical detection of Hcy exhibited excellent linearity, with a high sensitivity reaching 10.43 µA mM1 cm2 and a low detection limit of 1.31 µM. Furthermore, the CBS/NPG/GCE biosensor was successfully used to detect Hcy in urine samples with strong anti-interference capability and high selectivity (relative standard deviation less than 2.81%), while effectively reducing the interference from cysteine. These results confirmed that the proposed CBS/NPG/GCE electrochemical sensor achieved specific, sensitive, and reliable rapid detection of homocysteine, making it highly promising for practical applications in clinical treatment and health assessment. Full article
(This article belongs to the Collection Feature Papers in Environmental Microbiology)
Show Figures

Figure 1

29 pages, 2388 KB  
Review
Applications of Nanomaterial Coatings in Solid-Phase Microextraction (SPME)
by Taiwo Musa Adeniji, Naila Haroon and Keith J. Stine
Processes 2025, 13(1), 244; https://doi.org/10.3390/pr13010244 - 16 Jan 2025
Cited by 9 | Viewed by 3101
Abstract
This review explores the advances in developing adsorbent materials for solid-phase microextraction (SPME), focusing on nanoparticles, nanocomposites, and nanoporous structures. Nanoparticles, including those of metals (e.g., gold, silver), metal oxides (e.g., TiO2, ZnO), and carbon-based materials (e.g., carbon nanotubes, graphene), offer [...] Read more.
This review explores the advances in developing adsorbent materials for solid-phase microextraction (SPME), focusing on nanoparticles, nanocomposites, and nanoporous structures. Nanoparticles, including those of metals (e.g., gold, silver), metal oxides (e.g., TiO2, ZnO), and carbon-based materials (e.g., carbon nanotubes, graphene), offer enhanced surface area, improved extraction efficiency, and increased selectivity compared to traditional coatings. Nanocomposites, such as those combining metal oxides with polymers or carbon-based materials, exhibit synergistic properties, further improving extraction performance. Nanoporous materials, including metal–organic frameworks (MOFs) and ordered mesoporous carbons, provide high surface area and tunable pore structures, enabling selective adsorption of analytes. These advanced materials have been successfully applied to various analytes, including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), pesticides, and heavy metals, demonstrating improved sensitivity, selectivity, and reproducibility compared to conventional SPME fibers. The incorporation of nanomaterials has significantly expanded the scope and applicability of SPME, enabling the analysis of trace-level analytes in complex matrices. This review highlights the significant potential of nanomaterials in revolutionizing SPME technology, offering new possibilities for sensitive and selective analysis in environmental monitoring, food safety, and other critical applications. Full article
(This article belongs to the Special Issue Synthesis and Applications of Nanomaterials)
Show Figures

Graphical abstract

13 pages, 2992 KB  
Article
Sensing Platform Based on Gold Nanoclusters and Nanoporous Anodic Alumina for Preeclampsia Detection
by Josep Maria Cantons, Akash Bachhuka and Lluis F. Marsal
Biosensors 2024, 14(12), 610; https://doi.org/10.3390/bios14120610 - 13 Dec 2024
Viewed by 1916
Abstract
Preeclampsia is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity worldwide. Early diagnosis is crucial for mitigating its adverse effects, and recent investigations have identified endoglin as a potential biomarker for this purpose. Here, we present the [...] Read more.
Preeclampsia is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity worldwide. Early diagnosis is crucial for mitigating its adverse effects, and recent investigations have identified endoglin as a potential biomarker for this purpose. Here, we present the development of a hybrid biosensor platform for the ultrasensitive detection of endoglin, aimed at enabling the early diagnosis of preeclampsia. This platform integrates the high surface area properties of nanoporous anodic alumina (NAA) with the unique optical characteristics of gold nanoclusters (AuNCs) to achieve enhanced detection capabilities. The NAA surface functionalized to promote attachment of AuNCs, which then was functionalized with specific antibodies to confer selectivity towards endoglin. Photoluminescence (PL) analysis of the biosensor demonstrated a linear detection range of 10–50 ng/mL, with a detection limit of 5.4 ng/mL and a sensitivity of 0.004 a.u./(ng/mL). This proof-of-concept study suggests that the NAA-AuNCs-based biosensing platform holds significant potential for the development of ultrasensitive, portable, and cost-effective diagnostic tools for preeclampsia, offering a promising avenue for advancing prenatal care. Full article
(This article belongs to the Special Issue Emerging Applications of Label-Free Optical Biosensors)
Show Figures

Figure 1

20 pages, 8626 KB  
Article
Morpho-Molecular and Genomic Characterization of Penicillium mexicanum Isolates Retrieved from a Forsaken Gold Mine
by João Trovão, Fabiana Soares, Diana Sofia Paiva and António Portugal
Appl. Sci. 2024, 14(22), 10600; https://doi.org/10.3390/app142210600 - 17 Nov 2024
Viewed by 1764
Abstract
During the ongoing studies designed to examine the fungal diversity present within the abandoned and flooded Escádia Grande gold mine (Góis, Portugal), we repeatedly isolated several specimens belonging to a Penicillium species. Molecular phylogenetic analysis, coupled with morphological observations, positioned this fungus within [...] Read more.
During the ongoing studies designed to examine the fungal diversity present within the abandoned and flooded Escádia Grande gold mine (Góis, Portugal), we repeatedly isolated several specimens belonging to a Penicillium species. Molecular phylogenetic analysis, coupled with morphological observations, positioned this fungus within subgen. Penicillium sect. Paradoxa, series Atramentosa, pinpointing its identity as Penicillium mexicanum (the first record for mining soils and the country). Given the limited research conducted on Penicillia isolated from similar environments, the species genome was sequenced utilizing the Oxford Nanopore® MinION methodology and studied through bioinformatic analysis. The obtained genome has a size of 29.62 Mb, containing a 47.72% GC content, 10,156 genes, with 44 rRNAs and 178 tRNAs/tmRNAs, providing the first genomic resource for this microorganism. Bioinformatic analysis allowed us to identify multiple genomic traits that can contribute towards this species survival in these extreme environments, including the presence of high levels of major facilitator transporters (MFS), Zn (2)-C6 fungal-type DNA-binding domains, P-loop containing nucleoside triphosphate hydrolases, specific fungal transcription factors and sugar transporters. Furthermore, putative advantageous metabolic traits, such as methylotrophy, assimilatory nitrate and sulfate reduction abilities, were also detected. In addition, the results also highlighted a strong genomic and metabolic organization and investment towards arsenic detoxification (transport and oxidation). Lastly, thirty-two putative biosynthetic gene clusters were predicted, including some with high similarity values to monascorubrin, nidulanin A, histidyltryptophanyldiketopiperazine/dehydrohistidyltryptophanyldiketopiperazine/roquefortine D/roquefortine C/glandicoline A/glandicoline B/meleagrine, YWA1 and choline. Overall, this study expands the current Penicillia knowledge from mining environments while also enhancing our understanding regarding fungal arsenic resistance. Full article
(This article belongs to the Special Issue Advances in Environmental and Applied Mycology)
Show Figures

Figure 1

14 pages, 4039 KB  
Article
Nanoporous Gold-Modified Screen-Printed Electrodes for the Simultaneous Determination of Pb2+ and Cu2+ in Water
by Yongfang Li, Xuan Chen, Zhiyong Yuan, Zhijian Yi, Zijun Wang and Rui Wang
Sensors 2024, 24(17), 5745; https://doi.org/10.3390/s24175745 - 4 Sep 2024
Cited by 5 | Viewed by 2791
Abstract
In this study, nanoporous gold (NPG) was deposited on a screen-printed carbon electrode (SPCE) by the dynamic hydrogen bubble template (DHBT) method to prepare an electrochemical sensor for the simultaneous determination of Pb2+ and Cu2+ by square wave anodic stripping voltammetry [...] Read more.
In this study, nanoporous gold (NPG) was deposited on a screen-printed carbon electrode (SPCE) by the dynamic hydrogen bubble template (DHBT) method to prepare an electrochemical sensor for the simultaneous determination of Pb2+ and Cu2+ by square wave anodic stripping voltammetry (SWASV). The electrodeposition potential and electrodeposition time for NPG/SPCE preparation were investigated thoroughly. Scanning electron microscopy (SEM) and energy-dispersive X-ray diffraction (EDX) analysis confirmed successful fabrication of the NPG-modified electrode. Electrochemical characterization exhibits its superior electron transfer ability compared with bare and nanogold-modified electrodes. After a comprehensive optimization, Pb2+ and Cu2+ were simultaneously determined with linear range of 1–100 μg/L for Pb2+ and 10–100 μg/L for Cu2+, respectively. The limits of detection were determined to be 0.4 μg/L and 5.4 μg/L for Pb2+ and Cu2+, respectively. This method offers a broad linear detection range, a low detection limit, and good reliability for heavy metal determination in drinking water. These results suggest that NPG/SPCE holds great promise in environmental and food applications. Full article
(This article belongs to the Special Issue Research Progress in Electrochemical Aptasensors and Biosensors)
Show Figures

Figure 1

9 pages, 2043 KB  
Communication
Contributions of Long-Read Sequencing for the Detection of Antimicrobial Resistance
by Roberto Sierra, Mélanie Roch, Milo Moraz, Julien Prados, Nicolas Vuilleumier, Stéphane Emonet and Diego O. Andrey
Pathogens 2024, 13(9), 730; https://doi.org/10.3390/pathogens13090730 - 28 Aug 2024
Cited by 6 | Viewed by 1990
Abstract
Background. In the context of increasing antimicrobial resistance (AMR), whole-genome sequencing (WGS) of bacteria is considered a highly accurate and comprehensive surveillance method for detecting and tracking the spread of resistant pathogens. Two primary sequencing technologies exist: short-read sequencing (50–300 base pairs) and [...] Read more.
Background. In the context of increasing antimicrobial resistance (AMR), whole-genome sequencing (WGS) of bacteria is considered a highly accurate and comprehensive surveillance method for detecting and tracking the spread of resistant pathogens. Two primary sequencing technologies exist: short-read sequencing (50–300 base pairs) and long-read sequencing (thousands of base pairs). The former, based on Illumina sequencing platforms (ISPs), provides extensive coverage and high accuracy for detecting single nucleotide polymorphisms (SNPs) and small insertions/deletions, but is limited by its read length. The latter, based on platforms such as Oxford Nanopore Technologies (ONT), enables the assembly of genomes, particularly those with repetitive regions and structural variants, although its accuracy has historically been lower. Results. We performed a head-to-head comparison of these techniques to sequence the K. pneumoniae VS17 isolate, focusing on blaNDM resistance gene alleles in the context of a surveillance program. Discrepancies between the ISP (blaNDM-4 allele identified) and ONT (blaNDM-1 and blaNDM-5 alleles identified) were observed. Conjugation assays and Sanger sequencing, used as the gold standard, confirmed the validity of ONT results. This study demonstrates the importance of long-read or hybrid assemblies for accurate carbapenemase resistance gene identification and highlights the limitations of short reads in the context of gene duplications or multiple alleles. Conclusions. In this proof-of-concept study, we conclude that recent long-read sequencing technology may outperform standard short-read sequencing for the accurate identification of carbapenemase alleles. Such information is crucial given the rising prevalence of strains producing multiple carbapenemases, especially as WGS is increasingly used for epidemiological surveillance and infection control. Full article
Show Figures

Figure 1

Back to TopTop