Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shimizu, K.; Kawabe, R.; Hojo, H.; Shimizu, H.; Yamamoto, H.; Katsumata, M.; Shigematsu, K.; Mibu, K.; Kumagai, Y.; Oba, F.; et al. Direct Observation of Magnetization Reversal by Electric Field at Room Temperature in Co-Substituted Bismuth Ferrite Thin Film. Nano Lett. 2019, 19, 1767–1773. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Hong, H.J.; Jo, Y.-R.; Jung, S.-G.; Kim, S.; Kim, S.; Lee, J.; Choi, H.; Yoon, H.; Kim, S.-Y.; et al. Reversible magnetoelectric switching in multiferroic three-dimensional nanocup heterostructure films. NPG Asia Mater. 2019, 11, 68. [Google Scholar] [CrossRef]
- Rossell, M.D.; Erni, R.; Prange, M.P.; Idrobo, J.-C.; Luo, W.; Zeches, R.J.; Pantelides, S.T.; Ramesh, R. Atomic Structure of Highly Strained BiFeO3Thin Films. Phys. Rev. Lett. 2012, 108, 047601. [Google Scholar] [CrossRef] [PubMed]
- Markelova, M.; Nygaard, R.; Tsymbarenko, D.; Shurkina, A.; Abramov, A.; Amelichev, V.; Makarevich, A.; Vasiliev, A.; Kaul, A. Multiferroic h-LuFeO 3 Thin Films on (111) and (100) Surfaces of YSZ Substrates: An Experimental and Theoretical Study. ACS Appl. Electron. Mater. 2021, 3, 1015–1022. [Google Scholar] [CrossRef]
- Goswami, S.; Dey, K.; Chakraborty, S.; Giri, S.; Chowdhury, U.; Bhattacharya, D. Large Magnetoelectric Coupling in the Thin Film of Multiferroic CuO. ACS Omega 2020, 5, 22883–22890. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Shankar, S.; Kumar, A.; Anshul, A.; Jayasimhadri, M.; Thakur, O.P. Progress in multiferroic and magnetoelectric materials: Applications, opportunities and challenges. J. Mater. Sci. Mater. Electron. 2020, 31, 19487–19510. [Google Scholar] [CrossRef]
- Hojo, H.; Kawabe, R.; Shimizu, K.; Yamamoto, H.; Mibu, K.; Samanta, K.; Saha-Dasgupta, T.; Azuma, M. Ferromagnetism at Room Temperature Induced by Spin Structure Change in BiFe1−xCoxO3 Thin Films. Adv. Mater. 2017, 29, 1603131. [Google Scholar] [CrossRef]
- Jana, B.; Ghosh, K.; Rudrapal, K.; Gaur, P.; Shihabudeen, P.K.; Roy Chaudhuri, A. Recent Progress in Flexible Multiferroics. Front. Phys. 2022, 9, 810. [Google Scholar] [CrossRef]
- Liu, B.; Yang, C.; Li, X.; Wang, C.; Liu, G.; Yang, H.; Wang, Y. Origin of antipolar clusters in BiFeO3 epitaxial thin films. J. Eur. Ceram. Soc. 2018, 38, 621–627. [Google Scholar] [CrossRef]
- Lu, Q.; Choi, K.; Nam, J.-D.; Choi, H.J. Magnetic Polymer Composite Particles: Design and Magnetorheology. Polymers 2021, 13, 512. [Google Scholar] [CrossRef]
- Sorokin, V.V.; Stepanov, G.V.; Shamonin, M.; Monkman, G.J.; Khokhlov, A.R.; Kramarenko, E.Y. Hysteresis of the viscoelastic properties and the normal force in magnetically and mechanically soft magnetoactive elastomers: Effects of filler composition, strain amplitude and magnetic field. Polymer 2015, 76, 191–202. [Google Scholar] [CrossRef]
- Kawakami, Y.; Amano, T.; Ohashi, H.; Itoh, H.; Nakamura, Y.; Kishida, H.; Sasaki, T.; Kawaguchi, G.; Yamamoto, H.M.; Yamamoto, K.; et al. Petahertz non-linear current in a centrosymmetric organic superconductor. Nat. Commun. 2020, 11, 4138. [Google Scholar] [CrossRef] [PubMed]
- Salem, S.; Yilmaz, E. Magnetic nanoparticle-polymer hybrid materials. In Magnetic Nanoparticle-Based Hybrid Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 139–182. [Google Scholar]
- Kaspar, P.; Sobola, D.; Částková, K.; Knápek, A.; Burda, D.; Orudzhev, F.; Dallaev, R.; Tofel, P.; Trčka, T.; Grmela, L.; et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers 2020, 12, 2766. [Google Scholar] [CrossRef] [PubMed]
- Castkova, K.; Kastyl, J.; Sobola, D.; Petrus, J.; Stastna, E.; Riha, D.; Tofel, P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials 2020, 10, 1221. [Google Scholar] [CrossRef] [PubMed]
- Giannelli, P.; Bulletti, A.; Capineri, L. Multifunctional Piezopolymer Film Transducer for Structural Health Monitoring Applications. IEEE Sens. J. 2017, 17, 4583–4586. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, K.; Zhang, Q.M. Direct piezoelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress. Appl. Phys. Lett. 2007, 91, 222905. [Google Scholar] [CrossRef]
- Orudzhev, F.; Ramazanov, S.; Sobola, D.; Kaspar, P.; Trčka, T.; Částková, K.; Kastyl, J.; Zvereva, I.; Wang, C.; Selimov, D.; et al. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy 2021, 90, 106586. [Google Scholar] [CrossRef]
- Yakuphanoglu, F.; Şenkal, B.F. Electronic and Thermoelectric Properties of Polyaniline Organic Semiconductor and Electrical Characterization of Al/PANI MIS Diode. J. Phys. Chem. C 2007, 111, 1840–1846. [Google Scholar] [CrossRef]
- Mocioiu, A.-M.; Tudor, I.A.; Mocioiu, O.C. Application of Polyaniline for Flexible Semiconductors. Coatings 2021, 11, 49. [Google Scholar] [CrossRef]
- Wang, N.; Luo, X.; Han, L.; Zhang, Z.; Zhang, R.; Olin, H.; Yang, Y. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Lett. 2020, 12, 81. [Google Scholar] [CrossRef]
- Alikhanov, N.M.-R.; Rabadanov, M.K.; Orudzhev, F.F.; Gadzhimagomedov, S.K.; Emirov, R.M.; Sadykov, S.A.; Kallaev, S.N.; Ramazanov, S.M.; Abdulvakhidov, K.G.; Sobola, D. Size-dependent structural parameters, optical, and magnetic properties of facile synthesized pure-phase BiFeO3. J. Mater. Sci. Mater. Electron. 2021, 32, 13323–13335. [Google Scholar] [CrossRef]
- Park, T.-J.; Papaefthymiou, G.C.; Viescas, A.J.; Moodenbaugh, A.R.; Wong, S.S. Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO 3 Nanoparticles. Nano Lett. 2007, 7, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Chandra Das, S.; Majumdar, A.; Katiyal, S.; Poojitha, B.; Saha, S.; Shripathi, T. Phase pure epitaxial growth of BiFeO3 films: An effect of oxygen partial pressure. Solid State Commun. 2017, 264, 10–15. [Google Scholar] [CrossRef]
- Sobola, D.; Ramazanov, S.; Konečný, M.; Orudzhev, F.; Kaspar, P.; Papež, N.; Knápek, A.; Potoček, M. Complementary SEM-AFM of Swelling Bi-Fe-O Film on HOPG Substrate. Materials 2020, 13, 2402. [Google Scholar] [CrossRef]
- Signore, M.A.; Taurino, A.; Catalano, M.; Kim, M.; Che, Z.; Quaranta, F.; Siciliano, P. Growth assessment of (002)-oriented AlN thin films on Ti bottom electrode deposited on silicon and kapton substrates. Mater. Des. 2017, 119, 151–158. [Google Scholar] [CrossRef]
- Zhai, D.; Yang, Y.; Geng, Z.; Cui, B.; Zhao, R. A High-selectivity THz Filter Based on A Flexible Polyimide Film. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 719–724. [Google Scholar] [CrossRef]
- Bretos, I.; Jiménez, R.; Ricote, J.; Sirera, R.; Calzada, M.L. Photoferroelectric Thin Films for Flexible Systems by a Three-in-One Solution-Based Approach. Adv. Funct. Mater. 2020, 30, 2001897. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.L.; Wang, Z. In situ tuning of crystallization pathways by electron beam irradiation and heating in amorphous bismuth ferrite films. RSC Adv. 2018, 8, 23522–23528. [Google Scholar] [CrossRef]
- Almjasheva, O.V.; Popkov, V.I.; Proskurina, O.V.; Gusarov, V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosyst. Phys. Chem. Math. 2022, 13, 164–180. [Google Scholar] [CrossRef]
- Gridnev, S.A.; Kalinin, Y.E.; Dybov, V.A.; Popov, I.I.; Kashirin, M.A.; Tolstykh, N.A. Internal friction in thin-film ferrite bismuth with an amorphous structure. J. Alloys Compd. 2022, 918, 165610. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Marchand, B.; Jalkanen, P.; Tuboltsev, V.; Vehkamäki, M.; Puttaswamy, M.; Kemell, M.; Mizohata, K.; Hatanpää, T.; Savin, A.; Räisänen, J.; et al. Electric and Magnetic Properties of ALD-Grown BiFeO 3 Films. J. Phys. Chem. C 2016, 120, 7313–7322. [Google Scholar] [CrossRef]
- Ramazanov, S.; Sobola, D.; Orudzhev, F.; Knápek, A.; Polčák, J.; Potoček, M.; Kaspar, P.; Dallaev, R. Surface modification and enhancement of ferromagnetism in BiFeO3 nanofilms deposited on HOPG. Nanomaterials 2020, 10, 1990. [Google Scholar] [CrossRef] [PubMed]
- Orudzhev, F.; Ramazanov, S.; Sobola, D.; Isaev, A.; Wang, C.; Magomedova, A.; Kadiev, M.; Kaviyarasu, K. Atomic layer deposition of mixed-layered aurivillius phase on TiO2 nanotubes: Synthesis, characterization and photoelectrocatalytic properties. Nanomaterials 2020, 10, 2183. [Google Scholar] [CrossRef] [PubMed]
- Orudzhev, F.F.; Ramazanov, S.M.; Isaev, A.B.; Alikhanov, N.M.-R.; Sobola, D.; Presniakov, M.Y.; Kaviyarasu, K. Self-organization of layered perovskites on TiO2 nanotubes surface by atomic layer deposition. Mater. Today Proc. 2021, 36, 364–367. [Google Scholar] [CrossRef]
- Knápek, A.; Dallaev, R.; Burda, D.; Sobola, D.; Allaham, M.M.; Horáček, M.; Kaspar, P.; Matějka, M.; Mousa, M.S. Field Emission Properties of Polymer Graphite Tips Prepared by Membrane Electrochemical Etching. Nanomaterials 2020, 10, 1294. [Google Scholar] [CrossRef]
- Knápek, A.; Sýkora, J.; Chlumská, J.; Sobola, D. Programmable set-up for electrochemical preparation of STM tips and ultra-sharp field emission cathodes. Microelectron. Eng. 2017, 173, 42–47. [Google Scholar] [CrossRef]
- Tuttle, J.; DiPirro, M.; Canavan, E.; Hait, T.; Balachandran, U.; Amm, K.; Evans, D.; Gregory, E.; Lee, P.; Osofsky, M.; et al. Thermal properties of double-aluminized kapton at low temperatures. AIP Conf. Proc. 2008, 986, 34–41. [Google Scholar]
- Ramazanov, S.; Sobola, D.; Ţălu, Ş.; Orudzev, F.; Arman, A.; Kaspar, P.; Dallaev, R.; Ramazanov, G. Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2O3 and Fe2O3. Microsc. Res. Tech. 2022, 85, 1300–1310. [Google Scholar] [CrossRef]
- Perla, V.K.; Ghosh, S.K.; Mallick, K. Nonvolatile switchable resistive behaviour via organic–inorganic hybrid interactions. J. Mater. Sci. 2019, 54, 2324–2332. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Stach, S.; Ramazanov, S.; Sobola, D.; Ramazanov, G. Multifractal characterization of epitaxial silicon carbide on silicon. Mater. Sci. 2017, 35, 539–547. [Google Scholar] [CrossRef][Green Version]
- Zhang, Q.; Rana, A.; Liu, X.; Valanoor, N. Electrode Dependence of Local Electrical Properties of Chemical-Solution-Deposition-Derived BiFeO 3 Thin Films. ACS Appl. Electron. Mater. 2019, 1, 154–162. [Google Scholar] [CrossRef]
- Chisca, S.; Sava, I.; Musteata, V.-E.; Bruma, M. Dielectric and conduction properties of polyimide films. In Proceedings of the CAS 2011 Proceedings (2011 International Semiconductor Conference), Sinaia, Romania, 17–19 October 2011; pp. 253–256. [Google Scholar]
- He, J.-J.; Yang, H.-X.; Zheng, F.; Yang, S.-Y. Dielectric Properties of Fluorinated Aromatic Polyimide Films with Rigid Polymer Backbones. Polymers 2022, 14, 649. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sun, Z.; Wei, R.; Huang, Y.; Wang, L.; Leng, J.; Xiang, P.; Lan, M. First principles study of the magnetic properties and charge transfer of Ni-doped BiFeO3. J. Magn. Magn. Mater. 2018, 449, 10–16. [Google Scholar] [CrossRef]
- Yoo, S.-J.; Kim, J.-J. Charge Transport in Electrically Doped Amorphous Organic Semiconductors. Macromol. Rapid Commun. 2015, 36, 984–1000. [Google Scholar] [CrossRef]
- Pyatakov, A.P.; Sergeev, A.S.; Nikolaeva, E.P.; Kosykh, T.B.; Nikolaev, A.V.; Zvezdin, K.A.; Zvezdin, A.K. Micromagnetism and topological defects in magnetoelectric media. Physics 2015, 58, 981–992. [Google Scholar] [CrossRef]
- Orudzhev, F.F.; Ramazanov, S.M.; Sobola, D.; Alikhanov, N.M.R.; Dallaev, R.S. Property Management of BiFeO3-Based Multifunctional Perovskite Nanomaterials: Nanoparticles, Ceramics, and Thin Films. In Nanomaterials for Energy Conversion, Biomedical and Environmental Applications; Kasinathan, K., Elshikh, M.S., Al Farraj, D.A.A., Eds.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Yastrebov, S.G.; Lomanova, N.A. Specific Features in the Interaction between BiFeO3 Nanoclusters Synthesized by Solution Combustion. Tech. Phys. Lett. 2021, 47, 1–4. [Google Scholar] [CrossRef]
Sample | Number of Cycles | Film Thickness |
---|---|---|
Sample 1 | 400 | 42 |
Sample 2 | 600 | 77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramazanov, S.; Sobola, D.; Gajiev, G.; Orudzhev, F.; Kaspar, P.; Gummetov, A. Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition. Nanomaterials 2023, 13, 139. https://doi.org/10.3390/nano13010139
Ramazanov S, Sobola D, Gajiev G, Orudzhev F, Kaspar P, Gummetov A. Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition. Nanomaterials. 2023; 13(1):139. https://doi.org/10.3390/nano13010139
Chicago/Turabian StyleRamazanov, Shikhgasan, Dinara Sobola, Gaji Gajiev, Farid Orudzhev, Pavel Kaspar, and Adil Gummetov. 2023. "Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition" Nanomaterials 13, no. 1: 139. https://doi.org/10.3390/nano13010139
APA StyleRamazanov, S., Sobola, D., Gajiev, G., Orudzhev, F., Kaspar, P., & Gummetov, A. (2023). Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition. Nanomaterials, 13(1), 139. https://doi.org/10.3390/nano13010139