SiO2 Passivated Graphene Saturable Absorber Mirrors for Ultrashort Pulse Generation
Abstract
1. Introduction
2. Sample Preparation and Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Fermann, M.E.; Hartl, I. Ultrafast fibre lasers. Nat. Photonics 2013, 7, 868–874. [Google Scholar] [CrossRef]
- Boetti, N.; Pugliese, D.; Ceci-Ginistrelli, E.; Lousteau, J.; Janner, D.; Milanese, D. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review. Appl. Sci. 2017, 7, 1295. [Google Scholar] [CrossRef]
- Nelson, L.E.; Jones, D.J.; Tamura, K.; Haus, H.A.; Ippen, E.P. Ultrashort-pulse fiber ring lasers. Appl. Phys. B Lasers Opt. 1997, 65, 277–294. [Google Scholar] [CrossRef]
- Du, W.; Li, H.; Lan, C.; Li, C.; Li, J.; Wang, Z.; Liu, Y. Graphene/WS2 heterostructure saturable absorbers for ultrashort pulse generation in L-band passively mode-locked fiber lasers. Opt. Express 2020, 28, 11514–11523. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.; Wei, Z. Ultrafast Fiber Lasers: An Expanding Versatile Toolbox. iScience 2020, 23, 101101. [Google Scholar] [CrossRef]
- Guo, P.; Li, X.; Feng, T.; Zhang, Y.; Xu, W. Few-Layer Bismuthene for Coexistence of Harmonic and Dual Wavelength in a Mode-Locked Fiber Laser. ACS Appl. Mater. Interfaces 2020, 12, 31757–31763. [Google Scholar] [CrossRef]
- Liu, X.; Cui, Y.; Han, D.; Yao, X.; Sun, Z. Distributed ultrafast fibre laser. Sci. Rep. 2015, 5, 9101. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, Z.; Liu, X.; Yu, M.; Li, S.; Zhang, L.; Ni, Q.; Wang, J.; Wang, X. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings. Appl. Opt. 2019, 58, 8339–8343. [Google Scholar] [CrossRef]
- Lin, C.Y.; Cheng, C.H.; Chi, Y.C.; Set, S.Y.; Yamashita, S.; Lin, G.R. Low-Temperature PECVD Growth of Germanium for Mode-Locking of Er-Doped Fiber Laser. Nanomaterials 2022, 12, 1197. [Google Scholar] [CrossRef]
- Wang, Q.; Kang, J.; Wang, P.; He, J.; Liu, Y.; Wang, Z.; Zhang, H.; Liu, Y.-G. Broadband saturable absorption in germanene for mode-locked Yb, Er, and Tm fiber lasers. Nanophotonics 2022, 11, 3127–3137. [Google Scholar] [CrossRef]
- Peng, J.; Boscolo, S.; Zhao, Z.; Zeng, H. Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 2019, 5, eaax1110. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, X.; Wang, H.; Wang, S.; Qin, L.; Liu, J.; Zhang, Z. Tunable Graphene/Quantum-Dot Van der Waals Heterostructures’ Saturable Absorber Plane Arrays by Two-Step Femtosecond and Nanosecond Laser Postprocessing. Adv. Photonics Res. 2021, 3, 2100183. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.H.; Jiang, C.; Brown, C.T.A.; Ning, J.Q.; Zhang, K.; Yu, Q.; Ge, X.T.; Wang, Q.J.; Zhang, Z.Y. Photon-generated carrier transfer process from graphene to quantum dots: Optical evidences and ultrafast photonics applications. npj 2D Mater. Appl. 2020, 4, 27. [Google Scholar] [CrossRef]
- Bao, Q.; Loh, K.P. Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano 2012, 6, 3677–3694. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Jiang, Y.; Lu, S.; Shi, B.; Zhao, C.; Zhang, H.; Wen, S. Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime. Photonics Res. 2015, 3, 214–219. [Google Scholar] [CrossRef]
- Ai, F.; Li, X.; Qian, J. Dual-wavelength mode-locked fiber laser based on graphene materials. Eur. Phys. J. Spec. Top. 2022, 231, 643–649. [Google Scholar] [CrossRef]
- Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D.M.; Ferrari, A.C. Graphene Mode-Locked Ultrafast Laser. ACS Nano 2010, 4, 803–810. [Google Scholar] [CrossRef]
- Okhrimchuk, A.G.; Obraztsov, P.A. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene. Sci. Rep. 2015, 5, 11172. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, H.; Ni, Z.; Wang, Y.; Polavarapu, L.; Shen, Z.; Xu, Q.-H.; Tang, D.; Loh, K.P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 2011, 4, 297–307. [Google Scholar] [CrossRef]
- Lagatsky, A.A.; Sun, Z.; Kulmala, T.S.; Sundaram, R.S.; Milana, S.; Torrisi, F.; Antipov, O.L.; Lee, Y.; Ahn, J.H.; Brown, C.T.A.; et al. 2 μm solid-state laser mode-locked by single-layer graphene. Appl. Phys. Lett. 2013, 102, 013113. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Li, X.; Chandra, B.; Tulevski, G.; Wu, Y.; Freitag, M.; Zhu, W.; Avouris, P.; Xia, F. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 2012, 7, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, A.Y.; Guinea, F.; Garcia-Vidal, F.J.; Martin-Moreno, L. Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys. Rev. B 2012, 85, 081405. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, H.; Wang, B.; Ni, Z.; Lim, C.H.Y.X.; Wang, Y.; Tang, D.Y.; Loh, K.P. Broadband graphene polarizer. Nat. Photonics 2011, 5, 411–415. [Google Scholar] [CrossRef]
- Zapata, J.D.; Steinberg, D.; Saito, L.A.M.; de Oliveira, R.E.P.; Cárdenas, A.M.; de Souza, E.A.T. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep. 2016, 6, 20644. [Google Scholar] [CrossRef]
- Ahmed, K.; Paul, B.K.; Jabin, M.A.; Biswas, B. FEM analysis of birefringence, dispersion and nonlinearity of graphene coated photonic crystal fiber. Ceram. Int. 2019, 45, 15343–15347. [Google Scholar] [CrossRef]
- Liu, X.M.; Yang, H.R.; Cui, Y.D.; Chen, G.W.; Yang, Y.; Wu, X.Q.; Yao, X.K.; Han, D.D.; Han, X.X.; Zeng, C.; et al. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci. Rep. 2016, 6, 26024. [Google Scholar] [CrossRef]
- Li, W.; Chen, B.; Meng, C.; Fang, W.; Xiao, Y.; Li, X.; Hu, Z.; Xu, Y.; Tong, L.; Wang, H.; et al. Ultrafast All-Optical Graphene Modulator. Nano Lett. 2014, 14, 955–959. [Google Scholar] [CrossRef]
- Spühler, G.J.; Weingarten, K.J.; Grange, R.; Krainer, L.; Haiml, M.; Liverini, V.; Golling, M.; Schön, S.; Keller, U. Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B 2005, 81, 27–32. [Google Scholar] [CrossRef]
- Jasik, A.; Muszalski, J.; Gaca, J.; Wójcik, M.; Pierściński, K. Ultrashort pulses supported by SESAM absorber. Bull. Pol. Acad. Sci. Tech. Sci. 2010, 58, 477–483. [Google Scholar] [CrossRef]
- Saraceno, C.; Schriber, C.; Mangold, M.; Hoffmann, M.; Heckl, O.; Baer, C.R.; Golling, M.; Südmeyer, T.; Keller, U. SESAM Designs for Ultrafast Lasers; SPIE: Bellingham, WA, USA, 2013; Volume 8601. [Google Scholar]
- Chen, Z.; Wang, H.; Wang, Y.; Lv, R.; Yang, X.; Wang, J.; Li, L.; Ren, W. Improved optical damage threshold graphene Oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers. Carbon 2019, 144, 737–744. [Google Scholar] [CrossRef]
- Li, L.; Ren, Z.; Chen, X.; Qi, M.; Zheng, X.; Bai, J.; Sun, Z. Passively Mode-Locked Radially Polarized Nd-Doped Yttrium Aluminum Garnet Laser Based on Graphene-Based Saturable Absorber. Appl. Phys. Express 2013, 6, 082701. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Q.; Wang, X.; Jiang, C.; Guo, K.; Wang, H.; Deng, H.; Wu, J.; Zhang, K.; Zhang, Z. SiO2 passivated TaS2 saturable absorber mirrors for the ultrafast pulse generation. J. Alloy. Compd. 2022, 918, 165742. [Google Scholar] [CrossRef]
- Liu, S.; Lv, R.; Wang, Y.; Wang, J.; Wang, Y.; Wang, H. Passively Mode-Locked Fiber Laser with WS2/SiO2 Saturable Absorber Fabricated by Sol-Gel Technique. ACS Appl Mater Interfaces 2020, 12, 29625–29630. [Google Scholar] [CrossRef]
- Song, Y.; Zou, W.; Lu, Q.; Lin, L.; Liu, Z. Graphene Transfer: Paving the Road for Applications of Chemical Vapor Deposition Graphene. Small 2021, 17, e2007600. [Google Scholar] [CrossRef]
- Zhuang, B.; Li, S.; Li, S.; Yin, J. Ways to eliminate PMMA residues on graphene —— superclean graphene. Carbon 2021, 173, 609–636. [Google Scholar] [CrossRef]
- Rosa, H.G.; Steinberg, D.; Zapata, J.D.; Saito, L.A.M.; Cardenas, A.M.; Gomes, J.C.V.; Thoroh De Souza, E.A. Raman Mapping Characterization of All-Fiber CVD Monolayer Graphene Saturable Absorbers for Erbium-Doped Fiber Laser Mode Locking. J. Light. Technol. 2015, 33, 4118–4123. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Finke, T.; Nurnberg, J.; Sichkovskyi, V.; Golling, M.; Keller, U.; Reithmaier, J.P. Temperature resistant fast InxGa1-xAs / GaAs quantum dot saturable absorber for the epitaxial integration into semiconductor surface emitting lasers. Opt Express 2020, 28, 20954–20966. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Popa, D.; Akhmediev, N. Revealing the Transition Dynamics from Q Switching to Mode Locking in a Soliton Laser. Phys Rev Lett 2019, 123, 093901. [Google Scholar] [CrossRef]
- Omar, S.; Zulkipli, N.F.; Ahmed, N.; Jusoh, Z.; Musa, B.; Apsari, R.; Harun, S.W. Lanthanum hexaboride for Q-switching and mode-locking applications. Opt. Commun. 2022, 502, 127396. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Jiang, C.; Chu, H.; Dai, H.; Fu, B.; Lu, S.; Zhang, Z. SiO2 Passivated Graphene Saturable Absorber Mirrors for Ultrashort Pulse Generation. Nanomaterials 2023, 13, 111. https://doi.org/10.3390/nano13010111
Wang H, Jiang C, Chu H, Dai H, Fu B, Lu S, Zhang Z. SiO2 Passivated Graphene Saturable Absorber Mirrors for Ultrashort Pulse Generation. Nanomaterials. 2023; 13(1):111. https://doi.org/10.3390/nano13010111
Chicago/Turabian StyleWang, Hongpei, Cheng Jiang, Huiyuan Chu, Hao Dai, Beibei Fu, Shulong Lu, and Ziyang Zhang. 2023. "SiO2 Passivated Graphene Saturable Absorber Mirrors for Ultrashort Pulse Generation" Nanomaterials 13, no. 1: 111. https://doi.org/10.3390/nano13010111
APA StyleWang, H., Jiang, C., Chu, H., Dai, H., Fu, B., Lu, S., & Zhang, Z. (2023). SiO2 Passivated Graphene Saturable Absorber Mirrors for Ultrashort Pulse Generation. Nanomaterials, 13(1), 111. https://doi.org/10.3390/nano13010111