Coupling Plant Polyphenol Coordination Assembly with Co(OH)2 to Enhance Electrocatalytic Performance towards Oxygen Evolution Reaction
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Co(OH)2
2.3. Synthesis of Co(OH)2@TA-Fe
2.4. Synthesis of Co(OH)2@TA, Co(OH)2@Fe and TA-Fe
2.5. Materials Characterization
2.6. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.J.; Kim, H.Y.; Joo, J.; Joo, S.H.; Lim, J.S.; Lee, J.; Huang, H.; Shao, M.; Hu, J.; Kim, J.Y.; et al. Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond. J. Mater. Chem. A 2022, 10, 50–88. [Google Scholar] [CrossRef]
- Tang, T.; Ding, L.; Yao, Z.C.; Pan, H.R.; Hu, J.S.; Wan, L.J. Synergistic Electrocatalysts for Alkaline Hydrogen Oxidation and Evolution Reactions. Adv. Funct. Mater. 2021, 32, 2107479. [Google Scholar] [CrossRef]
- Yu, M.; Budiyanto, E.; Tuysuz, H. Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction. Angew. Chem. Int. Ed. Engl. 2022, 61, e202103824. [Google Scholar] [PubMed]
- Tavella, F.; Giusi, D.; Ampelli, C. Nitrogen reduction reaction to ammonia at ambient conditions: A short review analysis of the critical factors limiting electrocatalytic performance. Curr. Opin. Green Sustain. Chem. 2022, 35, 100604. [Google Scholar] [CrossRef]
- Tang, W.; Li, B.; Teng, K.; Wang, X.; Liu, R.; Wu, M.; Zhang, L.; Ren, P.; Zhang, J.; Feng, M. Advanced noble-metal-free bifunctional electrocatalysts for metal-air batteries. J. Mater. 2022, 8, 454–474. [Google Scholar] [CrossRef]
- Gao, L.; Cui, X.; Sewell, C.D.; Li, J.; Lin, Z. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 8428–8469. [Google Scholar] [CrossRef]
- Singh, B.; Yadav, A.; Indra, A. Realizing electrochemical transformation of a metal–organic framework precatalyst into a metal hydroxide–oxy(hydroxide) active catalyst during alkaline water oxidation. J. Mater. Chem. A 2022, 10, 3843–3868. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, Y.; Liu, S.; Xu, W.; Wu, L.; Hsieh, Y.-C.; Liu, P.; Zhu, Y.; Sasaki, K.; Renner, J.N.; et al. Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts. J. Electroanal. Chem. 2018, 819, 296–305. [Google Scholar] [CrossRef]
- Escalera-López, D.; Czioska, S.; Geppert, J.; Boubnov, A.; Röse, P.; Saraçi, E.; Krewer, U.; Grunwaldt, J.-D.; Cherevko, S. Phase- and Surface Composition-Dependent Electrochemical Stability of Ir-Ru Nanoparticles during Oxygen Evolution Reaction. ACS Catal. 2021, 11, 9300–9316. [Google Scholar] [CrossRef]
- Zheng, L.; Hu, L.; Hu, Y.; Liu, F.; Liu, Z.; Xue, Y.; Zhang, J.; Liu, H.; Tang, C. Interfacial modification of Co(OH)2/Co3O4 nanosheet heterostructure arrays for the efficient oxygen evolution reaction. Catal. Sci. Technol. 2021, 11, 3706–3714. [Google Scholar] [CrossRef]
- Vijayakumar, E.; Ramakrishnan, S.; Sathiskumar, C.; Yoo, D.J.; Balamurugan, J.; Noh, H.S.; Kwon, D.; Kim, Y.H.; Lee, H. MOF-derived CoP-nitrogen-doped carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries. Chem. Eng. J. 2022, 428, 131115. [Google Scholar] [CrossRef]
- Yao, N.; Wang, G.; Jia, H.; Yin, J.; Cong, H.; Chen, S.; Luo, W. Intermolecular Energy Gap-Induced Formation of High-Valent Cobalt Species in CoOOH Surface Layer on Cobalt Sulfides for Efficient Water Oxidation. Angew. Chem. Int. Ed. Engl. 2022, 61, e202117178. [Google Scholar] [CrossRef]
- Park, H.; Bae, J.W.; Lee, T.H.; Park, I.J.; Kim, C.; Lee, M.G.; Lee, S.A.; Yang, J.W.; Choi, M.J.; Hong, S.H.; et al. Surface-Tailored Medium Entropy Alloys as Radically Low Overpotential Oxygen Evolution Electrocatalysts. Small 2022, 18, e2105611. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C.; Cai, N.; Wang, M.; Li, H.; Yu, F. High topological tri-metal phosphide of CoP@FeNiP toward enhanced activities in oxygen evolution reaction. Nanoscale 2021, 13, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Peng, D.; Yao, Z.; Xia, J.; Zhang, B.; Liu, H.; Chen, Z.; Wu, F.; Wu, J.; Huang, Y. Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER. Chem. Eng. J. 2021, 425, 131533. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, F.; Zhang, Y.; Luo, X.; Chen, L.; Shi, Y. N,S-Doped hollow carbon nanosheet-encapsulated Co9S8 nanoparticles as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Dalton Trans 2022, 51, 12630–12640. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Han, C.; Gao, J.; Pan, L.; Wu, J.; Zhu, X.-D.; Zou, J.-J. NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review. ACS Catal. 2021, 11, 12485–12509. [Google Scholar] [CrossRef]
- Martinez, E.Y.; Zhu, K.; Li, C.W. Influence of the Defect Stability on n-Type Conductivity in Electron-Doped alpha- and beta-Co(OH)2 Nanosheets. Inorg. Chem. 2021, 60, 6950–6956. [Google Scholar] [CrossRef]
- Huang, C.; Zhong, Y.; Chen, J.; Li, J.; Zhang, W.; Zhou, J.; Zhang, Y.; Yu, L.; Yu, Y. Fe induced nanostructure reorganization and electronic structure modulation over CoNi (oxy)hydroxide nanorod arrays for boosting oxygen evolution reaction. Chem. Eng. J. 2021, 403, 126304. [Google Scholar] [CrossRef]
- McAteer, D.; Godwin, I.J.; Ling, Z.; Harvey, A.; He, L.; Boland, C.S.; Vega-Mayoral, V.; Szydłowska, B.; Rovetta, A.A.; Backes, C.; et al. Liquid Exfoliated Co(OH)2 Nanosheets as Low-Cost, Yet High-Performance, Catalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1702965. [Google Scholar] [CrossRef]
- Gu, L.-F.; Li, C.-F.; Zhao, J.-W.; Xie, L.-J.; Wu, J.-Q.; Ren, Q.; Li, G.-R. Dual modulation of lattice strain and charge polarization induced by Co(OH)2/Ni(OH)2 interfaces for efficient oxygen evolution catalysis. J. Mater. Chem. A 2021, 9, 13279–13287. [Google Scholar] [CrossRef]
- Duraivel, M.; Nagappan, S.; Park, K.H.; Prabakar, K. Hierarchical 3D flower like cobalt hydroxide as an efficient bifunctional electrocatalyst for water splitting. Electrochim. Acta 2022, 411, 140071. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, L.; Wang, Z.; Bu, D.; Zhan, K.; Yan, Y.; Yang, J.; Zhao, B. N and Mn dual-doped cactus-like cobalt oxide nanoarchitecture derived from cobalt carbonate hydroxide as efficient electrocatalysts for oxygen evolution reactions. J. Colloid Interface Sci. 2021, 597, 361–369. [Google Scholar] [CrossRef]
- Du, X.; Guo, J.; Chen, M.; Cheong, W.-C.; Chen, Y.; Liu, D.; Chen, S.; Wang, X.; Lo, K.H.; Hu, J.-S.; et al. Surface reconstruction on silver nanoparticles decorated trimetallic hydroxide nanosheets to generate highly active oxygen-deficient (oxy)hydroxide layer for high-efficient water oxidation. Chem. Eng. J. 2021, 425, 131662. [Google Scholar] [CrossRef]
- Song, X.-Z.; Zhang, N.; Liu, F.; Wang, Z.-H.; Zhu, W.-Y.; Zhang, G.-Z.; Niu, Z.-Y.; Wang, X.-F.; Tan, Z. Spontaneously engineering heterogeneous interface of silver nanoparticles on α-Co(OH)2 for boosting electrochemical oxygen evolution. J. Alloy. Compd. 2021, 873, 159766. [Google Scholar] [CrossRef]
- Zhang, T.; Meng, Y.L.; Zhao, Y.H.; Ni, J.C.; Pan, Y.; Dai, Y.; Tan, Z.; Wang, X.F.; Song, X.Z. Boosting the oxygen evolution electrocatalysis of high-entropy hydroxides by high-valence nickel species regulation. Chem. Commun. 2022, 58, 7682–7685. [Google Scholar] [CrossRef]
- Kitano, S.; Noguchi, T.G.; Nishihara, M.; Kamitani, K.; Sugiyama, T.; Yoshioka, S.; Miwa, T.; Yoshizawa, K.; Staykov, A.; Yamauchi, M. Heterointerface Created on Au-Cluster-Loaded Unilamellar Hydroxide Electrocatalysts as a Highly Active Site for the Oxygen Evolution Reaction. Adv. Mater. 2022, 34, e2110552. [Google Scholar] [CrossRef]
- Song, X.Z.; Zhang, N.; Wang, X.F.; Tan, Z. Recent advances of metal-organic frameworks and their composites toward oxygen evolution electrocatalysis. Mater. Today Energy 2021, 19, 100597. [Google Scholar] [CrossRef]
- Gong, C.; Li, W.; Lei, Y.; He, X.; Chen, H.; Du, X.; Fang, W.; Wang, D.; Zhao, L. Interfacial engineering of ZIF-67 derived CoSe/Co(OH)2 catalysts for efficient overall water splitting. Compos. Part B Eng. 2022, 236, 109823. [Google Scholar] [CrossRef]
- Devi, B.; Koner, R.R.; Kurungot, S. Recent advances in the metal-organic framework-based electrocatalysts for trifunctional electrocatalysis. Dalton Trans. 2022, 51, 13573–13590. [Google Scholar] [CrossRef]
- Chen, C.; Yang, H.; Yang, X.; Ma, Q. Tannic acid: A crosslinker leading to versatile functional polymeric networks: A review. RSC Adv. 2022, 12, 7689–7711. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jang, H.; Wang, J.; Wu, Z.; Liu, X.; Cho, J. Cobalt-Tannin-Framework-Derived Amorphous Co-P/Co-N-C on N, P Co-Doped Porous Carbon with Abundant Active Moieties for Efficient Oxygen Reactions and Water Splitting. ChemSusChem 2019, 12, 830–838. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Z.; Zeng, C.; Jiang, J.; Gao, H.; Ai, L. Synergistically boosting oxygen evolution performance of iron-tannic electrocatalyst via localized photothermal effect. Colloids Surf. A Physicochem. Eng. Asp. 2022, 638, 128248. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Zhao, S.; Chen, Q.; Zhang, J. Interfacial coordination assembly of tannic acid with metal ions on three-dimensional nickel hydroxide nanowalls for efficient water splitting. J. Mater. Chem. A 2020, 8, 15845–15852. [Google Scholar] [CrossRef]
- Wang, T.; Cao, X.; Jiao, L. MOFs-Derived Carbon-Based Metal Catalysts for Energy-Related Electrocatalysis. Small 2021, 17, e2004398. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, H.; Yuan, W.; Li, C.M. Tannic Acid-Mediated In Situ Controlled Assembly of NiFe Alloy Nanoparticles on Pristine Graphene as a Superior Oxygen Evolution Catalyst. ACS Appl. Energy Mater. 2020, 3, 3966–3977. [Google Scholar] [CrossRef]
- Li, H.; Shu, X.; Tong, P.; Zhang, J.; An, P.; Lv, Z.; Tian, H.; Zhang, J.; Xia, H. Fe-Ni Alloy Nanoclusters Anchored on Carbon Aerogels as High-Efficiency Oxygen Electrocatalysts in Rechargeable Zn-Air Batteries. Small 2021, 17, e2102002. [Google Scholar] [CrossRef]
- Song, X.Z.; Zhu, W.Y.; Ni, J.C.; Zhao, Y.H.; Zhang, T.; Tan, Z.; Liu, L.Z.; Wang, X.F. Boosting Hydrogen Evolution Electrocatalysis via Regulating the Electronic Structure in a Crystalline-Amorphous CoP/CeOx p-n Heterojunction. ACS Appl. Mater Interfaces 2022, 14, 33151–33160. [Google Scholar] [CrossRef]
- Fang, H.; Chen, G.; Wang, L.; Yan, J.; Zhang, L.; Gao, K.; Zhang, Y.; Wang, L. Facile fabrication of hierarchical film composed of Co(OH)2@Carbon nanotube core/sheath nanocables and its capacitive performance. RSC Adv. 2018, 8, 38550–38555. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Chen, L.; Wei, X.; Shi, J.; He, M. Facile synthesis of Cu doped cobalt hydroxide (Cu–Co(OH)2) nano-sheets for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 2017, 5, 22568–22575. [Google Scholar] [CrossRef]
- Xu, Q.; Jiu, H.; Zhang, L.; Song, W.; Wei, H.; Wang, C.; Yang, J.; Guo, F.; Gao, T. Structure design of CuO/Cu2O@C heterostructure polyhedron accumulated by hollow microspheres for high-performance lithium storage. J. Alloy. Compd. 2021, 887, 161417. [Google Scholar] [CrossRef]
- Deng, G.; Wang, T.; Alshehri, A.A.; Alzahrani, K.A.; Wang, Y.; Ye, H.; Luo, Y.; Sun, X. Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification. J. Mater. Chem. A 2019, 7, 21674–21677. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Y.; Liang, Y.; Du, Y.; Zhang, B. In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angew. Chem. Int. Ed. 2019, 58, 3769–3773. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Han, S.; Wang, J.; Zhu, Y. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction. Appl. Surf. Sci. 2018, 434, 1266–1273. [Google Scholar] [CrossRef]
- Chen, T.; Wu, J.; Zhu, C.; Liu, Z.; Zhou, W.; Zhu, C.; Guan, C.; Fang, G. Rational design of iron single atom anchored on nitrogen doped carbon as a high-performance electrocatalyst for all-solid-state flexible zinc-air batteries. Chem. Eng. J. 2021, 405, 125956. [Google Scholar] [CrossRef]
- Peng, H.; Zhou, K.; Jin, Y.; Zhang, Q.; Liu, J.; Wang, H. Hierarchical nanostructure with ultrafine MoO3 particles-decorated Co(OH)2 nanosheet array on Ag nanowires for promoted hydrogen evolution reaction. Chem. Eng. J. 2022, 429, 132477. [Google Scholar] [CrossRef]
- Xu, Z.; Zuo, W.; Shi, T.; Liu, X.; Li, H.; Zhao, P.; Cheng, G. An Fe-doped Co-oxide electrocatalyst synthesized through a post-modification method toward advanced water oxidation. Dalton Trans. 2022, 51, 3137–3145. [Google Scholar] [CrossRef]
- Jia, X.; Wu, J.; Lu, K.; Li, Y.; Qiao, X.; Kaelin, J.; Lu, S.; Cheng, Y.; Wu, X.; Qin, W. Organic–inorganic hybrids of Fe–Co polyphenolic network wrapped Fe3O4 nanocatalysts for significantly enhanced oxygen evolution. J. Mater. Chem. A 2019, 7, 14302–14308. [Google Scholar] [CrossRef]
- Cheng, J.; Yue, X.; Chen, C.; Shen, X.; Zeng, S.; Ji, Z.; Yuan, A.; Zhu, G. Template-assisted synthesis of accordion-like CoFe(OH) nanosheet clusters on GO sheets for electrocatalytic water oxidation. J. Electroanal. Chem. 2022, 905, 115957. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Fan, R.Y.; Cao, Y.N.; Wang, H.Y.; Dong, B.; Zhao, H.Y.; Wang, F.L.; Yu, J.F.; Chai, Y.M. Oriented and robust anchoring of Fe via anodic interfacial coordination assembly on ultrathin Co hydroxides for efficient water oxidation. Nanoscale 2021, 13, 13463–13472. [Google Scholar] [CrossRef]
- Sung, M.-C.; Lee, G.-H.; Kim, D.-W. CeO2/Co(OH)2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction. J. Alloys Compd. 2019, 800, 450–455. [Google Scholar] [CrossRef]
- Ge, R.; Ren, X.; Ji, X.; Liu, Z.; Du, G.; Asiri, A.M.; Sun, X.; Chen, L. Benzoate Anion-Intercalated Layered Cobalt Hydroxide Nanoarray: An Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemSusChem 2017, 10, 4004–4008. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Peng, H.; Wang, X.; Hu, L.; Peng, M.; Liu, Z.; Jiang, G. Nitrate reduction by nanoscale zero valent iron (nFe0)-based Systems: Mechanism, reaction pathway and strategy for enhanced N2 formation. Chem. Eng. J. 2022, 430, 133133. [Google Scholar] [CrossRef]
- Jin, C.; Hou, M.; Li, X.; Liu, D.; Qu, D.; Dong, Y.; Xie, Z.; Zhang, C. Rapid electrodeposition of Fe-doped nickel selenides on Ni foam as a bi-functional electrocatalyst for water splitting in alkaline solution. J. Electroanal. Chem. 2022, 906, 116014. [Google Scholar] [CrossRef]
- Anantharaj, S.; Kundu, S.; Noda, S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514. [Google Scholar] [CrossRef]
- Sun, F.; Li, L.; Wang, G.; Lin, Y. Iron incorporation affecting the structure and boosting catalytic activity of β-Co(OH)2: Exploring the reaction mechanism of ultrathin two-dimensional carbon-free Fe3O4-decorated β-Co(OH)2 nanosheets as efficient oxygen evolution electrocatalysts. J. Mater. Chem. A 2017, 5, 6849–6859. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Zhou, M. Fabrication of hierarchical Co(OH)2@Ni(OH)2 core-shell nanosheets on carbon cloth as an advanced electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2019, 479, 1270–1276. [Google Scholar] [CrossRef]
- Lei, Y.; Huang, R.; Xie, H.; Zhang, D.; Liu, X.; Si, Y.; Li, N. Electronic structure tuning of FeCo nanoparticles embedded in multi-dimensional carbon matrix for enhanced bifunctional oxygen electrocatalysis. J. Alloys Compd. 2021, 853, 157070. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, Z.; Jin, Z.; Li, X.; Chen, Y. The cobalt carbide/bimetallic CoFe phosphide dispersed on carbon nanospheres as advanced bifunctional electrocatalysts for the ORR, OER, and rechargeable Zn-air batteries. J. Colloid Interface Sci. 2021, 590, 321–329. [Google Scholar] [CrossRef]
- Adamson, W.; Jia, C.; Li, Y.; Zhao, C. Vanadium-induced fragmentation of crystalline CoFe hydr(oxy)oxide electrocatalysts for enhanced oxygen evolution reaction. Int. J. Hydrog. Energy 2021, 46, 35230–35238. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Chen, Y.-P.; Cao, Y.; Zhang, L.; Feng, J.-J.; Wang, A.-J. Aminouracil-assisted synthesis of CoFe decorated bougainvillea-like N-doped carbon nanoflowers for boosting Zn–air battery and water electrolysis. J. Power Sources 2022, 521, 230926. [Google Scholar] [CrossRef]
- Lei, Z.; Tan, Y.; Zhang, Z.; Wu, W.; Cheng, N.; Chen, R.; Mu, S.; Sun, X. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2020, 14, 868–878. [Google Scholar] [CrossRef]
- Li, G.; Liu, C.; Zhang, Z.; Cui, B.; Chen, Y.; Deng, Y.; Hu, W. Nano-manufacturing of Co(OH)2@NC for efficient oxygen evolution/reduction reactions. J. Mater. Sci. Technol. 2021, 81, 131–138. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.-Z.; Zhao, Y.-H.; Zhang, F.; Ni, J.-C.; Zhang, Z.; Tan, Z.; Wang, X.-F.; Li, Y. Coupling Plant Polyphenol Coordination Assembly with Co(OH)2 to Enhance Electrocatalytic Performance towards Oxygen Evolution Reaction. Nanomaterials 2022, 12, 3972. https://doi.org/10.3390/nano12223972
Song X-Z, Zhao Y-H, Zhang F, Ni J-C, Zhang Z, Tan Z, Wang X-F, Li Y. Coupling Plant Polyphenol Coordination Assembly with Co(OH)2 to Enhance Electrocatalytic Performance towards Oxygen Evolution Reaction. Nanomaterials. 2022; 12(22):3972. https://doi.org/10.3390/nano12223972
Chicago/Turabian StyleSong, Xue-Zhi, Yu-Hang Zhao, Fan Zhang, Jing-Chang Ni, Zhou Zhang, Zhenquan Tan, Xiao-Feng Wang, and Yanqiang Li. 2022. "Coupling Plant Polyphenol Coordination Assembly with Co(OH)2 to Enhance Electrocatalytic Performance towards Oxygen Evolution Reaction" Nanomaterials 12, no. 22: 3972. https://doi.org/10.3390/nano12223972
APA StyleSong, X.-Z., Zhao, Y.-H., Zhang, F., Ni, J.-C., Zhang, Z., Tan, Z., Wang, X.-F., & Li, Y. (2022). Coupling Plant Polyphenol Coordination Assembly with Co(OH)2 to Enhance Electrocatalytic Performance towards Oxygen Evolution Reaction. Nanomaterials, 12(22), 3972. https://doi.org/10.3390/nano12223972