Liquid-Metal-Mediated Electrocatalyst Support Engineering toward Enhanced Water Oxidation Reaction
Abstract
:1. Introduction
2. Experimental Section
2.1. Catalyst Support Fabrication (Al2O3 and MnO)
2.2. Physical Characterization:
2.3. Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, X.; Chen, Y.; Lai, W.; Li, P.; Ye, C.; Liu, N.; Dou, S.X.; Pan, H.; Sun, W. Enriched d-Band Holes Enabling Fast Oxygen Evolution Kinetics on Atomic−Layered Defect-Rich Lithium Cobalt Oxide Nanosheets. Adv. Funct. Mater. 2022, 2200663. [Google Scholar] [CrossRef]
- Lao, M.; Li, P.; Jiang, Y.; Pan, H.; Dou, S.X.; Sun, W. From Fundamentals and Theories to Heterostructured Electrocatalyst Design: An In−depth Understanding of Alkaline Hydrogen Evolution Reaction. Nano Energy 2022, 98, 107231. [Google Scholar] [CrossRef]
- You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571−1580. [Google Scholar] [CrossRef] [PubMed]
- Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765−1772. [Google Scholar] [CrossRef]
- Li, P.; Zhao, G.; Cui, P.; Cheng, N.; Lao, M.; Xu, X.; Dou, S.X.; Sun, W. Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy 2021, 83, 105850. [Google Scholar] [CrossRef]
- Zheng, X.; Li, P.; Dou, S.; Sun, W.; Pan, H.; Wang, D.; Li, Y. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809−2858. [Google Scholar] [CrossRef]
- He, L.; Hu, S.; Jiang, L.; Liao, G.; Chen, X.; Han, H.; Xiao, L.; Ren, Q.; Wang, Y.; Su, S.; et al. Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3 catalysts: Roles of catalyst supports. Fuel Process. Technol. 2018, 176, 7−14. [Google Scholar] [CrossRef]
- Iriondo, A.; Barrio, V.L.; Cambra, J.F.; Arias, P.L.; Güemez, M.B.; Navarro, R.M.; Sánchez-Sánchez, M.C.; Fierro, J.L.G. Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Top. Catal. 2008, 49, 46−58. [Google Scholar] [CrossRef]
- Ivanova, A.S.; Slavinskaya, E.M.; Gulyaev, R.V.; Zaikovskii, V.I.; Stonkus, O.A.; Danilova, I.G.; Plyasova, L.M.; Polukhina, I.A.; Boronin, A.I. Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl. Catal. B 2010, 97, 57−71. [Google Scholar] [CrossRef]
- Meephoka, C.; Chaisuk, C.; Samparnpiboon, P.; Praserthdam, P. Effect of phase composition between nano γ−and χ−Al2O3 on Pt/Al2O3 catalyst in CO oxidation. Catal. Commun. 2008, 9, 546−550. [Google Scholar] [CrossRef]
- Yang, P.; Zhao, D.; Margolese, D.I.; Chmelka, B.F.; Stucky, G.D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396, 152−155. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, A.; Wang, X.; Zhang, T. Ordered crystalline alumina molecular sieves synthesized via a nanocasting route. Chem. Mater. 2006, 18, 5153−5155. [Google Scholar] [CrossRef]
- Ren, T.-Z.; Yuan, Z.-Y.; Su, B.-L. Microwave−assisted preparation of hierarchical mesoporous macroporous boehmite AlOOH and γ-Al2O3. Langmuir 2004, 20, 1531−1534. [Google Scholar] [CrossRef] [PubMed]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710−712. [Google Scholar] [CrossRef]
- Palleau, E.; Reece, S.; Desai, S.C.; Smith, M.E.; Dickey, M.D. Self−healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 2013, 25, 1589−1592. [Google Scholar] [CrossRef]
- Kim, D.H.; Ahn, J.H.; Choi, W.M.; Kim, H.S.; Kim, T.H.; Song, J.; Huang, Y.Y.; Liu, Z.; Lu, C.; Rogers, J.A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507−511. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Xiao, J.; Song, J.; Huang, Y.; Rogers, J.A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 2010, 22, 2108−2124. [Google Scholar] [CrossRef]
- LeMieux, M.C.; Bao, Z. Stretching our imagination. Nat. Nanotechnol. 2008, 3, 585−586. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603−1607. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.R.; Hayes, G.J.; So, J.H.; Lazzi, G.; Dickey, M.D. A frequency shifting liquid metal antenna with pressure responsiveness. Appl. Phys. Lett. 2011, 99, 013501. [Google Scholar] [CrossRef]
- Dickey, M.D. Stretchable and soft electronics using liquid metals. Adv. Mater. 2017, 9, 1606425. [Google Scholar] [CrossRef] [PubMed]
- Khoshmanesh, K.; Tang, S.Y.; Zhu, J.Y.; Schaefer, S.; Mitchell, A.; Kalantar-Zadeh, K.; Dickey, M.D. Liquid metal enabled microfluidics. Lab Chip 2017, 17, 974−993. [Google Scholar] [CrossRef] [PubMed]
- Eaker, C.B.; Dickey, M.D. Liquid metals as ultra-stretchable, soft, and shape reconfigurable conductors. Micro-Nanotech. Sens. Syst. Appl. VII 2015, 9467, 21−29. [Google Scholar]
- Kazem, N.; Hellebrekers, T.; Majidi, C. Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 2017, 29, 1605985. [Google Scholar] [CrossRef]
- Esrafilzadeh, D.; Zavabeti, A.; Jalili, R.; Atkin, P.; Choi, J.; Carey, B.J.; Brkljača, R.; O’Mullane, A.P.; Dickey, M.D.; Officer, D.L.; et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 2019, 10, 865. [Google Scholar] [CrossRef]
- Liang, S.T.; Wang, H.Z.; Liu, J. Progress, Mechanisms and Applications of Liquid−Metal Catalyst Systems. Chem. Eur. J. 2018, 24, 17616−17626. [Google Scholar] [CrossRef]
- Zavabeti, A.; Zhang, B.Y.; de Castro, I.A.; Ou, J.Z.; Carey, B.J.; Mohiuddin, M.; Datta, R.; Xu, C.; Mouritz, A.P.; McConville, C.F.; et al. Green Synthesis of Low−Dimensional Aluminum Oxide Hydroxide and Oxide Using Liquid Metal Reaction Media: Ultrahigh Flux Membranes. Adv. Funct. Mater. 2018, 28, 1804057. [Google Scholar] [CrossRef]
- Cui, Y.; Liang, F.; Yang, Z.; Xu, S.; Zhao, X.; Ding, Y.; Lin, Z.; Liu, J. Metallic bond−enabled wetting behavior at the liquid Ga/CuGa2 interfaces. ACS Appl. Mater. Interfaces 2018, 10, 9203−9210. [Google Scholar] [CrossRef]
- Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; de Castro, I.A.; Esrafilzadeh, D.; Barrow, S.J.; Dickey, M.D.; Kalantar−zadeh, K. Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev. 2018, 47, 4073−4111. [Google Scholar] [CrossRef]
- Zavabeti, A.; Ou, J.Z.; Carey, B.J.; Syed, N.; Orrell−Trigg, R.; Mayes, E.L.; Xu, C.; Kavehei, O.; O’Mullane, A.P.; Kaner, R.B.; et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 2017, 358, 332−335. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, G.; Li, P.; Fan, Y.; Zhu, Q.; Xia, L.; Du, Y.; Dou, S.X.; Xu, X. Liquid-Metal-Mediated Electrocatalyst Support Engineering toward Enhanced Water Oxidation Reaction. Nanomaterials 2022, 12, 2153. https://doi.org/10.3390/nano12132153
Bo G, Li P, Fan Y, Zhu Q, Xia L, Du Y, Dou SX, Xu X. Liquid-Metal-Mediated Electrocatalyst Support Engineering toward Enhanced Water Oxidation Reaction. Nanomaterials. 2022; 12(13):2153. https://doi.org/10.3390/nano12132153
Chicago/Turabian StyleBo, Guyue, Peng Li, Yameng Fan, Qiang Zhu, Linlin Xia, Yi Du, Shi Xue Dou, and Xun Xu. 2022. "Liquid-Metal-Mediated Electrocatalyst Support Engineering toward Enhanced Water Oxidation Reaction" Nanomaterials 12, no. 13: 2153. https://doi.org/10.3390/nano12132153
APA StyleBo, G., Li, P., Fan, Y., Zhu, Q., Xia, L., Du, Y., Dou, S. X., & Xu, X. (2022). Liquid-Metal-Mediated Electrocatalyst Support Engineering toward Enhanced Water Oxidation Reaction. Nanomaterials, 12(13), 2153. https://doi.org/10.3390/nano12132153