Enhanced Mechanic Strength and Thermal Conductivities of Mica Composites with Mimicking Shell Nacre Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Main Materials
2.2. Fabrication of Mica Composites
2.3. Characterization
3. Results and Discussion
3.1. Subsection Nanoparticle Dispersion Characterization
3.2. Mechanics Performance Analysis
3.3. Thermal Performance Analysis
3.4. Breakdown Performance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ding, J.H.; Zhao, H.R.; Yu, H.B. Superior to graphene: Super-anticorrosive natural mica nanosheets. Nanoscale 2020, 12, 16253–16261. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.K.; Jiang, L.; Zhang, P.; Zhang, X.Y.; Ma, N.; Wei, H. Force-Induced Self-Assembly of Supramolecular Modified Mica Nanosheets for Ductile and Heat-Resistant Mica Papers. Langmuir 2021, 37, 5131–5138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Deng, H.; Fu, Q. Recent progress on thermal conductive and electrical insulating polymer composites. Compos. Commun. 2018, 8, 74–82. [Google Scholar] [CrossRef]
- Ghassemi, M. High power density technologies for large generators and motors for marine applications with focus on electrical insulation challenges. High Volt. 2020, 5, 7–14. [Google Scholar] [CrossRef]
- Andraschek, N.; Wanner, A.J.; Ebner, C.; Riess, G. Mica/Epoxy-Composites in the Electrical Industry: Applications, Composites for Insulation, and Investigations on Failure Mechanisms for Prospective Optimizations. Polymers 2016, 8, 201. [Google Scholar] [CrossRef] [PubMed]
- Tomaskova, T.; Svoboda, M.; Shlykevich, A.; Trnka, P.; IEEE. Increase the Thermal Conductivity of High Voltage Electrical Insulation Systems. In Proceedings of the 17th European Conference on Power Electronics and Applications (EPE ECCE-Europe), Geneva, Switzerland, 8–10 September 2015. [Google Scholar]
- Nguyen, H.; Liu, Y.Q.; Chen, W.Q.; Ghassemi, M.; Chapman, J.; Bazzi, A.; Cao, Y.; IEEE. Nanostructured Insulation for High Torque Density Electric Propulsion Motors. In Proceedings of the IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 14–17 August 2017; pp. 274–279. [Google Scholar]
- Kil, H.S.; Rhee, S.W. Synthesis and Infrared Light Reflecting Characteristics of TiO2/Mica Hybrid Composites. Appl. Chem. Eng. 2016, 27, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Peng, K.; Zhang, Q.T.; Chen, G.Q.; Zhou, G.M.; Lin, H.Q.; Qu, M.Z. Carbon nanotube/mica composite powder prepared by substrate-induced method. J. Inorg. Mater. 2007, 22, 1131–1134. [Google Scholar]
- Zhao, Y.S.; Dang, W.B.; Lu, Z.Q.; Wang, L.M.; Si, L.M.; Zhang, M.Y. A novel mica-based composite with hybrid aramid fibers for electrical insulating applications: Largely improved mechanical properties and moisture resistance. Polym. Int. 2018, 67, 204–211. [Google Scholar] [CrossRef]
- Wang, Y.J.; Xia, S.; Li, H.; Wang, J.F. Unprecedentedly Tough, Folding-Endurance, and Multifunctional Graphene-Based Artificial Nacre with Predesigned 3D Nanofiber Network as Matrix. Adv. Funct. Mater. 2019, 29, 1903876. [Google Scholar] [CrossRef]
- Yao, H.B.; Tan, Z.H.; Fang, H.Y.; Yu, S.H. Artificial Nacre-like Bionanocomposite Films from the Self-Assembly of Chitosan-Montmorillonite Hybrid Building Blocks. Angew. Chem. Int. Ed. 2010, 49, 10127–10131. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.Z.; Chen, X.H.; Xiao, G.; Li, H.; Xia, S.; Wang, J.F. A Bioinspired Ultratough Multifunctional Mica-Based Nanopaper with 3D Aramid Nanofiber Framework as an Electrical Insulating Material. ACS Nano 2020, 14, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.Q.; Ning, D.D.; Dang, W.B.; Wang, D.N.; Jia, F.F.; Li, J.Y.; Songfeng, E. Comparative study on the mechanical and dielectric properties of aramid fibrid, mica and nanofibrillated cellulose based binary composites. Cellulose 2020, 27, 8027–8037. [Google Scholar] [CrossRef]
- Mao, L.B.; Gao, H.L.; Yao, H.B.; Liu, L.; Colfen, H.; Liu, G.; Chen, S.M.; Li, S.K.; Yan, Y.X.; Liu, Y.Y.; et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pech-Cohuo, S.C.; Martin-Lopez, H.; Uribe-Calderon, J.; Gonzalez-Canche, N.G.; Salgado-Transito, I.; May-Pat, A.; Cuevas-Bernardino, J.C.; Ayora-Talavera, T.; Cervantes-Uc, J.M.; Pacheco, N. Physicochemical, Mechanical, and Structural Properties of Bio-Active Films Based on Biological-Chemical Chitosan, a Novel Ramon (Brosimum alicastrum) Starch, and Quercetin. Polymers 2022, 14, 1346. [Google Scholar] [CrossRef]
- Yang, Z.H.; Zhang, Y.L.; Zhao, Y.H.; Dong, H.; Peng, J.; He, Q. Preparation of an Antimicrobial and Antioxidant Bio-Polymer Film and Its Application as Glazing Shell for Postharvest Quality of Fresh-Cut Apple. Foods 2022, 11, 985. [Google Scholar] [CrossRef]
- Tang, L.; Wu, M.; Zhang, J.; Huang, Y.; Huang, D.; Wang, P. Nanocellulose Material for Household Engineering Plastic Material, Comprises Nanocellulose Aggregate. Chinese Patent CN 109942720-A, 28 June 2019. [Google Scholar]
50% Mica + 5% Nanocellulose | 50% Mica | 70% Mica | GB/T 5019.12-2017 | |
---|---|---|---|---|
Thickness/mm | 0.12 ± 0.02 | 0.12 ± 0.02 | 0.15 ± 0.02 | 0.15 ± 0.02 |
Total weight/(g/m2) | 154.34 | 149.14 | 238.69 | 215 ± 20 |
Mica content/(g/m2) | 74.68 | 74.57 | 167.1 | 180 ± 20 |
Glass fabric/(g/m2) | 0 | 0 | 0 | 23 ± 2 |
Accelerator content/(g/m2) | 74.68 | 74.57 | 71.61 | 12 ± 4 |
Tensile strength/(N/10 mm) | 99.60 | 78.20 | 40.70 | ≥80 |
Breakdown strength/(kV/mm) | 18.64 | 18.53 | 19.53 | ≥15 |
Bulk resistivity (Ω·m) | 1010 | 1010 | 1010 | - |
Thermal conductivity/(W/(m·K)) | 0.71 | 0.42 | 0.48 | 0.20 |
Stiffness (N/m) | 17 | 17 | 41.1 | ≤50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, F.; Cao, J.; Li, Y. Enhanced Mechanic Strength and Thermal Conductivities of Mica Composites with Mimicking Shell Nacre Structure. Nanomaterials 2022, 12, 2155. https://doi.org/10.3390/nano12132155
Tian F, Cao J, Li Y. Enhanced Mechanic Strength and Thermal Conductivities of Mica Composites with Mimicking Shell Nacre Structure. Nanomaterials. 2022; 12(13):2155. https://doi.org/10.3390/nano12132155
Chicago/Turabian StyleTian, Fuqiang, Jinmei Cao, and Yiming Li. 2022. "Enhanced Mechanic Strength and Thermal Conductivities of Mica Composites with Mimicking Shell Nacre Structure" Nanomaterials 12, no. 13: 2155. https://doi.org/10.3390/nano12132155
APA StyleTian, F., Cao, J., & Li, Y. (2022). Enhanced Mechanic Strength and Thermal Conductivities of Mica Composites with Mimicking Shell Nacre Structure. Nanomaterials, 12(13), 2155. https://doi.org/10.3390/nano12132155